×

zbMATH — the first resource for mathematics

On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid. (English) Zbl 0373.76022

MSC:
76B47 Vortex flows for incompressible inviscid fluids
76U05 General theory of rotating fluids
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] R. W. Carrol: Abstract methods in partial differential equations. Harper, Row Publishers, New York, 1968.
[2] M. Feistauer: Some cases of numerical solution of differential equations describing the vortex-flow through three-dimensional axially-symmetric channels. Apl. mat. 16 (1971), No 4, 265-288. · Zbl 0221.65184 · eudml:14710
[3] M. Feistauer J. Polášek: The calculation of axially-symmetric stream fields. Proceedings of the Hydro-Turbo Conference 74, Luhačovice 1974
[4] M. Feistauer: The calculation of some types of stream fields in the model of a unified outlet. Technical research report Tp VZ 11/74, ŠKODA Plzeň, 1974
[5] O. John J. Nečas: The equations of mathematical physics. SPN Prague, 1972
[6] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. · Zbl 1225.35003
[7] М. М. Вайнберг: Вариационный метод и метод монотонных операторов. Hauka, Москва, 1972. · Zbl 1156.34335 · doi:10.1070/PU1972v014n05ABEH004669 · ufn.ru
[8] N. H. Bekua: Обобщенные аналитические функции. Москва, 1959. · Zbl 1047.90504 · doi:10.1287/mnsc.6.1.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.