×

On the Caratheodory method of the extension of measures and integrals. (English) Zbl 0374.28012


MSC:

28A60 Measures on Boolean rings, measure algebras
28A10 Real- or complex-valued set functions

References:

[1] ALFSEN E. M.: Order theoretic foundations of integration. Math. Ann. 149, 1963, 419-461. · Zbl 0111.25605 · doi:10.1007/BF01397977
[2] BREHMER S.: Verbandtheoretische Charakterisierung des Mass- und Integralbegriffs von Carathéodory. Potsdam. Forsch. 1974, B, No 3, 88-91.
[3] CHOQUET G.: Theory of capacities. Annales Inst. Fourier 5, 1953-54, 131-295.
[4] FUTÁŠ E.: Extension of continuous functionals. Mat. Čas. 21, 1971, 191-198. · Zbl 0225.46049
[5] KRICKEBERG K.: Probability theory. New York 1965. · Zbl 0154.18507
[6] NEVEU J.: Bases mathématique du calcul des probabilités. Paris 1964. · Zbl 0137.11203
[7] PUGLISI M.: Seminorme di Beppo Levi ed integrali di Daniel sopra uno spazio die Riesz astratto. Ricerche di Matematica 13, 1969, 181-214. · Zbl 0193.01102
[8] RIEČAN B.: О нєпрєрывном продолжєнии монотонных функционалов нєкоторого типа. Mat.-fyz. Čas. 15, 1965, 116-125.
[9] RIEČAN B.: О продолжєнии опєраторов с значєниями в линєйних полуупорядочєнных пространствах. Čas. pěst. mat. 93, 1968, 459-471
[10] RIEČAN B.: On the unified measure and integration theory. Acta fac. rer. nat. Univ. Comen. · Zbl 0108.05003
[11] RIEČAN B.: Extension of measure and integral by the help of a pseudometric. Math. Slovaca 27, 1977, 143-152.
[12] ŠABO M.: On an extension of finite functional by the transfinite induction. Math. Slovaca 26, 1976, 193-200. · Zbl 0349.28004
[13] TOPSOE F.: Topology and measure. Springer lecture notes 133, Berlin 1970, Matematika 16:4, 1972, 90-148. · Zbl 0197.33301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.