×

zbMATH — the first resource for mathematics

On the essential self-adjointness of powers of Schrödinger-type operators. (English) Zbl 0374.35014

MSC:
35J15 Second-order elliptic equations
35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions)
47B25 Linear symmetric and selfadjoint operators (unbounded)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Evans, Proc. Conf. Ordinary and Partial Differential Equations, Dundee. Lecture Notes in Mathematics 564 (1976)
[2] DOI: 10.1007/BF00250679 · Zbl 0326.35018 · doi:10.1007/BF00250679
[3] DOI: 10.1016/0022-1236(73)90003-7 · Zbl 0263.35066 · doi:10.1016/0022-1236(73)90003-7
[4] Atkinson, Proc. Roy. Soc. Edinburgh Sect.A 73 pp 167– (1975) · Zbl 0344.34014 · doi:10.1017/S030821050001636X
[5] Reed, Fourier Analysis, selfadjointness (1975)
[6] DOI: 10.1112/jlms/s2-15.1.119 · Zbl 0356.34023 · doi:10.1112/jlms/s2-15.1.119
[7] DOI: 10.1016/0022-1236(73)90004-9 · Zbl 0266.35019 · doi:10.1016/0022-1236(73)90004-9
[8] DOI: 10.1007/BF02760233 · Zbl 0246.35025 · doi:10.1007/BF02760233
[9] DOI: 10.1007/BF00253334 · Zbl 0103.31801 · doi:10.1007/BF00253334
[10] Friedman, Partial Differential Equations (1969) · Zbl 0224.35002
[11] DOI: 10.1112/jlms/s2-15.2.271 · Zbl 0406.34037 · doi:10.1112/jlms/s2-15.2.271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.