×

Diophantine approximation and lattices with complex multiplication. (English) Zbl 0375.10022


MSC:

11J81 Transcendence (general theory)
14K22 Complex multiplication and abelian varieties

References:

[1] Anderson, M.: Inhomogeneous linear forms in algebraic points of an elliptic function, Transcendence theory: advances and applications, pp. 121-143, London, New York: Academic Press 1977
[2] Coates, J., Lang, S.: Diophantine approximation on Abelian varieties with complex multiplication, Inventiones math.34, 129-133 (1976) · Zbl 0342.10018 · doi:10.1007/BF01425479
[3] Hodge, W.V.D., Pedoe, D.: Methods of algebraic geometry Vol. II, Cambridge: Cambridge University Press 1952 · Zbl 0048.14502
[4] Lang, S.: Introduction to algebraic geometry, Reading, Mass.: Addison-Wesley 1958 · Zbl 0095.15301
[5] Lang, S.: Introduction to transcendental numbers, Reading, Mass.: Addison-Wesley 1966 · Zbl 0144.04101
[6] Lang, S.: Diophantine approximation on Abelian varieties with complex multiplication, Advances in Math.17, 281-336 (1975) · Zbl 0306.14019 · doi:10.1016/0001-8708(75)90095-X
[7] Masser, D.W.: Linear forms in algebraic points of Abelian functions I, II, Math. Proc. Cambridge Philos. Soc.77, 499-513 (1975);79, 55-70 (1976) · Zbl 0306.14018 · doi:10.1017/S030500410005132X
[8] Masser, D.W.: Linear forms in algebraic points of Abelian functions III, Proc. London Math. Soc.33, 549-564 (1976) · Zbl 0334.14019 · doi:10.1112/plms/s3-33.3.549
[9] Masser, D.W.: On the periods of Abelian functions in two variables, Mathematika22, 97-107 (1975) · Zbl 0318.14010 · doi:10.1112/S0025579300005933
[10] Masser, D.W.: Polynomial interpolation in several complex variables. · Zbl 0401.32009
[11] Ribet, K.: Dividing rational points on Abelian varieties of CM-type, Compositio Math.33, 69-74 (1976) · Zbl 0331.14020
[12] Schneider, Th.: Zur Theorie der Abelschen Funktionen und Integrale, J. Reine Angew. Math.183, 110-128 (1941) · JFM 67.0147.02 · doi:10.1515/crll.1941.183.110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.