Le groupe des transformations de \([0,1]\) qui preservent la mesure de Lebesgue est un groupe simple. (French) Zbl 0375.28008


28D05 Measure-preserving transformations
20G99 Linear algebraic groups and related topics
Full Text: DOI


[1] D. B. Epstein, Diff(M)is simple?, Symposium on Differential Equations and Dynamical Systems, Warwick, 1968–69, Lecture Notes206, Springer-Verlag, pp. 52–54.
[2] N. A. Friedman,Introduction to Ergodic Theory, Van Nostrand, Reinhold, 1970. · Zbl 0212.40004
[3] P. R. Halmos,Ergodic Theory, Chelsea, 1956.
[4] S. Harada,Remarks on the topological group of measure preserving transformations, Proc. Japan Acad.27 (1951), 523–526. · Zbl 0044.12503
[5] G. Higman,On infinite simple permutation groups, Publ. Math. Debrecen3 (1953–54), 221–226. · Zbl 0057.25801
[6] M. Keane,Contractibility of the automorphism group of a non-atomic measure space, Proc. Amer. Math. Soc.26 (1970), 420–422. · Zbl 0201.56701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.