×

zbMATH — the first resource for mathematics

Boundary properties of holomorphic functions of several complex variables. (English) Zbl 0375.32005

MSC:
32A10 Holomorphic functions of several complex variables
32-02 Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces
32A30 Other generalizations of function theory of one complex variable (should also be assigned at least one classification number from Section 30-XX)
30D40 Cluster sets, prime ends, boundary behavior
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32T99 Pseudoconvex domains
32Q99 Complex manifolds
32D10 Envelopes of holomorphy
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. A. Aizenberg, ?Certain boundary properties of the analytic functions of many complex variables,? in: Research on Contemporary Problems in the Theory of Functions of a Complex Variable [in Russian], Fizmatgiz, Moscow (1961), pp. 239?241.
[2] L. A. Aizenberg, ?Polynomials, orthogonal holomorphic functions of several complex variables, and the generalization of the theorems of Hartogs and of the Rieszs,? in: Holomorphic Functions of Several Complex Variables [in Russian], Krasnoyarsk (1972), pp. 5?19.
[3] A. M. Aronov and Sh. A. Dautov, ?On integral representations for complex differential forms,? Sibirsk. Matem. Zh.,13, No. 4, 739?474 (1972).
[4] V. A. Baikov, ?On one boundary theorem for holomorphic functions of two complex variables,? Uspekhi Matem. Nauk,24, No. 5, 221?222 (1969).
[5] N. N. Bogolyubov, B. V. Medvedev, and M. K. Polivanov, Questions in the Theory of Dispersion Relations [in Russian], Fizmatgiz, Moscow (1958), 203 pp. · Zbl 0113.45302
[6] R. É. Val’skii, ?On measures orthogonal to analytic functions in Cn,? Dokl. Akad. Nauk SSSR,198, No. 3, 502?505 (1971).
[7] V. S. Vinogradov, ?On an analog of the Cauchy integral for analytic functions of several complex variables,? Dokl. Akad. Nauk SSSR,178, No. 2, 282?285 (1968). · Zbl 0167.36403
[8] A. G. Vitushkin, ?Conditions on a set, necessary and sufficient for the possibility of uniform approximation by analytic (or rational) functions of every function continuous on this set,? Dokl. Akad. Nauk SSSR,128, No. 1, 17?20 (1959).
[9] A. G. Vitushkin, ?Analytic capacity of sets in approximation theory problems,? Uspekhi Matem. Nauk,22, No. 6, 141?199 (1967). · Zbl 0164.37701
[10] A. G. Vitushkin, ?On one problem of W. Rudin,? Dokl. Akad. Nauk SSSR,213, No. 1, 14?15 (1973). · Zbl 0292.32011
[11] V. S. Vladimirov, Methods in the Theory of Functions of Several Complex Variables [in Russian], Nauka, Moscow (1964), 411 pp.
[12] V. S. Vladimirov, ?Bogolyubov’s ?edge-of-the-wedge? theorem, its development and applications,? in: Problems of Theoretical Physics [in Russian], Nauka, Moscow (1969), pp. 61?67, 427.
[13] V. S. Vladimirov, ?Holomorphic functions with a nonnegative imaginary part in a tubular region over a cone,? Matem. Sb., No. 1, 128?152 (1969).
[14] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, N. J. (1969), 257 pp; Russian translation: Mir, Moscow (1973), 334 pp. · Zbl 0213.40401
[15] R. S. Gunning and H. Rossi, Analytic Functions of Several Complex Variables [Russian translation], Mir, Moscow (1969), 395 pp. · Zbl 0175.08901
[16] S. G. Gindikin, ?Analysis in homogeneous domains,? Uspekhi Matem. Nauk,19, No. 4, 3?92 (1964). · Zbl 0144.08101
[17] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, 2nd ed. [in Russian], Nauka, Moscow (1966), 628 pp. · Zbl 0148.30603
[18] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1962), 217 pp; Russian translation: Izd. Inostr. Lit., Moscow (1963), 311 pp.
[19] Sh. A. Dautov, ?On forms orthogonal to holomorphic functions when integrating along the boundary of a strongly pseudoconvex domain,? Dokl. Akad. Nauk SSSR,203, No. 1, 16?18 (1972).
[20] Sh. A. Dautov, ?On forms orthogonal to holomorphic functions and similar questions,? Funktsional’. Analiz i Ego Prilozhen.,6, No. 4, 81?82 (1972).
[21] Sh. A. Dautov, ?On \(\bar \partial \) -closed forms of type (p, n?1) as analogs of holomorphic functions of one complex variable,? in: Holomorphic Functions of Many Complex Variables [in Russian], Krasnoyarsk (1972), pp. 21?36.
[22] M. A. Evgrafov, Analytic Functions, 2nd ed., revised and augmented [in Russian], Nauka, Moscow (1968), 471 pp. · Zbl 0147.32605
[23] A. Zygmund, Trigonometric Series, Vol. II [Russian translation], Mir, Moscow (1965), 537 pp. · Zbl 0131.06703
[24] M. V. Keldysh and M. A. Lavrent’ev, ?On the uniqueness of the Neumann problem,? Dokl. Akad. Nauk SSSR,16, 151?152 (1937).
[25] J. Leray, Differential and Integral Calculus on Complex Analytic Manifolds [Russian translation], Izd. Inostr. Lit., Moscow (1961), 140 pp.
[26] G. A. Margulis, ?Correspondence of boundaries under biholomorphic mappings of multidimensional domains,? Repts. Abstr. All-Union Conf. Function Theory [in Russian], Khar’kov (1971), 137?138.
[27] L. A. Markushevich, ?Approximation by polynomials of continuous functions on Jordan arcs in the space Kn of n complex variables,? Sibirsk. Matem. Zh.,2, No. 2, 237?260 (1961).
[28] B. S. Mityagin and G. M. Khenkin, ?Linear problems of complex analysis,? Uspekhi Matem. Nauk,26, No. 4, 93?152 (1971). · Zbl 0243.32005
[29] A. I. Petrosyan, ?Uniform approximation of functions by polynomials on Weil polytopes,? Izv. Akad. Nauk SSSR, Ser. Matem.,34, No. 6, 1241?1261 (1970).
[30] S. I. Pinchuk, ?Proper holomorphic mappings of strongly pseudoconvex domains,? Sibirsk. Matem. Zh.,15, No. 4, 909?918 (1974).
[31] S. I. Pinchuk, ?Boundary uniqueness theorem for holomorphic functions of several complex variables,? Matem. Zametki,15, No. 2, 205?212 (1974).
[32] S. I. Pinchuk, ?Bogolyubov’s ?edge-of-the-wedge? theorem for generating manifolds,? Matem. Sb., No. 3, 468?482 (1974).
[33] P. L. Polyakov, ?Banach cohomologies of piecewise strongly pseudoconvex domains,? Matem. Sb., No. 2, 238?255 (1972).
[34] I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Gostekhizdat, Moscow-Leningrad (1950).
[35] I. I. Privalov and P. I. Kuznetsov, ?Boundary problems and various classes of harmonic and subharmonic functions defined in arbitrary regions,? Mat. Sb.,6, No. 3, 345?376 (1939).
[36] I. I. Pyatetskii-Shapiro, ?Geometry and classification of bounded homogeneous domains,? Uspekhi Matem. Nauk,20, No. 2, 3?51 (1965).
[37] A. V. Romanov and G. M. Khenkin, ?Exact Hölder estimates of solutions of the \(\bar \partial \) -equation,? Izv. Akad. Nauk SSSR, Ser. Matem.,35, No. 5, 1171?1183 (1971).
[38] V. N. Senichkin, ?Examples of a thick polynomially-convex compact subset of space C2 with a connected interior, on which not every continuous function, analytic at the interior points, can be uniformly approximated by polynomials,? Zap. Nauchn. Seminarov, Leningr. Otd. Matem. Inst. Akad. Nauk SSSR,22, 199?201 (1971).
[39] V. N. Senichkin, ?Algebra of analytic functions, continuous on a sphere, with a perfect set of singularities and polynomial approximations on thick compacta in C2,? Zap. Nauchn. Seminarov, Leningr. Otd. Matem. Inst. Akad. Nauk SSSR,30, 172?173 (1972).
[40] E. D. Solomentsev, ?On certain classes of subharmonic functions,? Izv. Akad. Nauk SSSR, Ser. Matem., No. 5?6, 571?582 (1938). · Zbl 0020.36404
[41] A. E. Tumanov, ?On boundary values of holomorphic functions of several complex variables,? Uspekhi Matem. Nauk,29, No. 4, 158?159 (1974).
[42] M. V. Fedoryuk, ?On approximations of continuous functions by polynomials on smooth curves in an n-dimensional complex space,? Nauchn. Dokl. Vyssh. Shkoly Fiz.-Mat. Nauk, No. 2, 78?82 (1959).
[43] B. A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables [in Russian], Nauka, Moscow (1975).
[44] B. A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Complex Variables [in Russian], Fizmatgiz, Moscow (1963), 427 pp. · Zbl 0138.30902
[45] G. M. Khenkin, ?Banach spaces of analytic functions in a ball and in a bicylinder are nonisomorphic,? Funktsional’. Analiz i Ego Prilozhen.,2, No. 4, 82?91 (1968).
[46] G. M. Khenkin, ?Integral representation of functions holomorphic in strongly pseudoconvex domains and certain applications,? Matem. Sb.,78, No. 4, 611?632 (1969).
[47] G. M. Khenkin, ?Integral representation of functions in strongly pseudoconvex domains and applications to the \(\bar \partial \) -problem,? Matem. Sb., No. 2, 300?308 (1970).
[48] G. M. Khenkin, ?Approximation of functions in pseudoconvex domains and Leibenzon’s theorem,? Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. et Phys.,19, No. 1, 37?42 (1971).
[49] G. M. Khenkin, ?Uniform estimate of a solution of the \(\tilde \partial \) -problem in a Weil domain,? Uspekhi Matem. Nauk,26, No. 3, 211?212 (1971).
[50] G. M. Khenkin, ?Extension of bounded holomorphic functions from a submanifold of general position in a strongly pseudoconvex domain,? Izv. Akad. Nauk SSSR, Ser. Matem.,36, No. 3, 540?567 (1972).
[51] G. M. Khenkin, ?An analytic polyhedron is holomorphically not equivalent to a strongly pseudoconvex domain,? Dokl. Akad. Nauk SSSR,210, No. 5, 1026?1029 (1973).
[52] L. Hörmander, Introduction to the Theory of Functions of Several Complex Variables [Russian translation], Mir, Moscow (1968), 279 pp.
[53] E. M. Chirka, ?Approximation of continuous functions by functions holomorphic on Jordan arcs in Cn,? Dokl. Akad. Nauk SSSR,167, No. 1, 38?40 (1966). · Zbl 0161.27301
[54] E. M. Chirka, ?Approximation by holomorphic functions on smooth manifolds in Cn,? Matem. Sb.,78, No. 1, 101?123 (1969).
[55] E. M. Chirka, ?The Lindelöf and Fatou theorems in Cn,? Matem. Sb.,92, No. 4, 622?644 (1973).
[56] B. V. Shabat, Introduction to Complex Analysis [in Russian], Nauka, Moscow (1969), 576 pp. · Zbl 0188.37902
[57] H. Alexander, ?Extending bounded holomorphic functions from certain subvarieties of a polydisc,? Pacif. J. Math.,29, No. 3, 485?490 (1969). · Zbl 0179.12101 · doi:10.2140/pjm.1969.29.485
[58] H. Alexander, ?Uniform algebras on curves,? Bull. Amer. Math. Soc.,75, No. 6, 1269?1272 (1969). · Zbl 0184.17202 · doi:10.1090/S0002-9904-1969-12389-X
[59] H. Alexander, ?Polynomial approximation and hulls in sets of finite linear measure in Cn,? Amer. J. Math.,93, No. 1, 65?74 (1971). · Zbl 0221.32011 · doi:10.2307/2373448
[60] H. Alexander, ?Polynomial approximation and analytic structure,? Duke Math. J.,38, No. 1, 123?135 (1971). · Zbl 0227.46057 · doi:10.1215/S0012-7094-71-03816-6
[61] A. Andreotti and C. D. Hill, ?Complex characteristic coordinates and tangential Cauchy-Riemann equations,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,26, No. 2, 299?324 (1972). · Zbl 0256.32006
[62] A. Andreotti and C. D. Hill, ?E. E. Levi convexity and the Hans Lewy problem. Part I. Reduction to vanishing theorems,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,26, No. 2, 325?363 (1972). · Zbl 0256.32007
[63] A. Andreotti and C. D. Hill, ?E. E. Levi convexity and the Hans Lewy problem, Part II. Vanishing theorems,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. e. Mat.,26, No. 4, 747?806 (1972). · Zbl 0283.32013
[64] A. Andreotti and W. Stoll, ?The extension of bounded holomorphic functions from hyper-surfaces in a polycylinder,? Rice Univ. Stud.,56, No. 2, 199?222 (1970). · Zbl 0217.39203
[65] S. Bergman, ?Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande. I?II,? J. Reine und Angew. Math.,169, 1?42 (1933);172, 89?128 (1935).
[66] S. Bergman, ?The kernel function and conformal mapping,? Amer. Math. Soc. Survey, No. 5, 7?161 (1950). · Zbl 0040.19001
[67] A. Beurling, ?Analytic continuation across a linear boundary,? Acta Math.,128, No. 3?4, 153?182 (1972). · Zbl 0235.30003 · doi:10.1007/BF02392164
[68] E. Bishop, ?Subalgebras of functions on a Riemann surface,? Pacif. J. Math.,8, No. 1, 29?50 (1958). · Zbl 0083.06201 · doi:10.2140/pjm.1958.8.29
[69] E. Bishop, ?A minimal boundary for function algebras,? Pacif. J. Math.,9, No. 3, 629?642 (1959). · Zbl 0087.28503 · doi:10.2140/pjm.1959.9.629
[70] E. Bishop, ?A general Rudin-Carleson theorem,? Proc. Amer. Math. Soc.,13, No. 1, 140?143 (1962). · Zbl 0101.08807 · doi:10.1090/S0002-9939-1962-0133462-4
[71] E. Bishop, ?Analyticity in certain Banach algebras,? Trans. Amer. Math. Soc.,102, No. 3, 507?544 (1962). · Zbl 0112.07301
[72] E. Bishop, ?Differentiable manifolds in complex Euclidean space,? Duke Math. J.,32, No. 1, 1?21 (1965). · Zbl 0154.08501 · doi:10.1215/S0012-7094-65-03201-1
[73] J.-E. Björk, ?Analytic structures in the maximal ideal space of a function algebra,? Ark. Math.,8, No. 23, 239?244 (1971). · Zbl 0214.13901 · doi:10.1007/BF02589575
[74] S. Bochner, ?Analytic and meromorphic continuation by means of Green’s formula,? Ann. Math.,44, 652?673 (1943). · Zbl 0060.24206 · doi:10.2307/1969103
[75] S. Bochner, ?Group invariance and Cauchy’s formula in several variables,? Ann. Math.,45, 686?701 (1944). · Zbl 0060.24301 · doi:10.2307/1969297
[76] S. Bochner, ?Boundary values of analytic functions in several variables and of almost periodic functions,? Ann. Math.,45, 708?722 (1944). · Zbl 0060.24302 · doi:10.2307/1969298
[77] H. J. Bremermann, ?On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains,? Trans. Amer. Math. Soc.,91, No. 2, 246?276 (1959).
[78] B. Cole and R. M. Range, ?A-measures on complex manifolds and some applications,? J. Funct. Anal.,11, No. 4, 393?400 (1972). · Zbl 0245.32008 · doi:10.1016/0022-1236(72)90061-4
[79] A. M. Davie and B. K. Øksendal, ?Peak interpolation sets for some algebras of analytic functions,? Pacif. J. Math.,41, No. 1, 81?87 (1972). · doi:10.2140/pjm.1972.41.81
[80] K. Diederich, ?Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebiete,? Math. Ann.,187, No. 1, 9?36 (1970). · Zbl 0184.31302 · doi:10.1007/BF01368157
[81] K. Diederich, ?Über die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten,? Math. Ann.,203, No. 2, 129?170 (1973). · Zbl 0253.32011 · doi:10.1007/BF01431441
[82] A. Douady, ?Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné,? Ann. Inst. Fourier,16, No. 1, 1?95 (1966). · Zbl 0146.31103 · doi:10.5802/aif.226
[83] D. A. Eisenmann, ?Proper holomorphic self-maps of the unit ball,? Math. Ann.,190, No. 4, 298?305 (1971). · Zbl 0207.08202 · doi:10.1007/BF01431158
[84] H. Federer, Geometric Measure Theory (Grundlehren Math. Wiss., 153), Springer-Verlag, Berlin-Heidelberg-New York (1969), 676 pp. · Zbl 0176.00801
[85] G. Fichera, ?Caratterizzazione della traccia, sulla frontiera di un campo, di una funzione analitica di più variabili complesse,? Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. e Natur.,22, No. 6, 706?715 (1957). · Zbl 0106.05202
[86] W. Fischer and I. Lieb, ?Lokale Kerne und beschränkle Lösungen für den \(\bar \partial \) -operator auf q-konvexen Gebieten,? Math. Ann.,208, No. 3, 249?265 (1974). · Zbl 0277.35045 · doi:10.1007/BF01419585
[87] G. B. Foland and J. J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Ann. Math. Stud., No. 75, Princeton Univ Press, Princeton, N. J. (1972), 146 pp.
[88] F. Forelli, ?Measures orthogonal to polydisc algebras,? J. Math. and Mech.,17, No. 11, 1073?1086 (1968). · Zbl 0157.44502
[89] M. Freeman, ?Some conditions for uniform approximation on a manifold,? in: F. Birtel (Ed.), Function Algebras, (Proc. Internat. Symp. Function Algebras, Tulane Univ.), Scott-Foresman and Co., Chicago (1966). · Zbl 0144.37502
[90] M. Freeman, ?Uniform approximation on a real-analytic manifold,? Trans. Amer. Math. Soc.,143, 545?553 (1969). · Zbl 0188.45101 · doi:10.1090/S0002-9947-1969-0248525-3
[91] M. Freeman, ?Tangential Cauchy-Riemann equations and uniform approximations,? Pacif. J. Math.,33, No. 1, 101?108 (1970). · Zbl 0184.31103 · doi:10.2140/pjm.1970.33.101
[92] M. Freeman and R. Harvey, ?A compact set that is locally holomorphically convex but not holomorphically convex,? Pacif. J. Math.,48, No. 1, 77?81 (1973). · Zbl 0277.32009 · doi:10.2140/pjm.1973.48.77
[93] T. W. Gamelin, ?Polynomial approximation on thin sets,? Lect. Notes Math.,184, 50?78 (1971). · doi:10.1007/BFb0059278
[94] P. R. Garabedian and D. C. Spencer, ?Complex boundary value problem,? Trans. Amer. Math. Soc.,73, No. 2, 223?242 (1952). · Zbl 0049.18101 · doi:10.1090/S0002-9947-1952-0051326-X
[95] L. Garding and L. Hörmander, ?Strongly subharmonic functions,? Math. Scand.,15, No. 1, 93?96 (1964). · Zbl 0146.35403 · doi:10.7146/math.scand.a-10732
[96] A. M. Gleason, ?The abstract theorem of Cauchy-Weil,? Pacif. J. Math.,12, No. 2, 511?525 (1962). · Zbl 0117.09302 · doi:10.2140/pjm.1962.12.511
[97] J. Glicksberg, ?The abstract F. and M. Riesz theorem,? J. Funct. Anal.,1, No. 1, 109?122 (1967). · Zbl 0155.18503 · doi:10.1016/0022-1236(67)90029-8
[98] I. Graham, ?Boundary behavior of the Carathéodory, Kobayashi, and Bergman metrics on strongly pseudoconvex domains in Cn with smooth boundary,? Bull. Amer. Math. Soc.,79, 749?751 (1973). · Zbl 0267.32011 · doi:10.1090/S0002-9904-1973-13297-5
[99] H. Grauert, ?Bemerkenswerte pseudokonvexe Mannigfaltigkeiten,? Math. Z.,81, No. 5, 317?391 (1963). · Zbl 0151.09702 · doi:10.1007/BF01111528
[100] H. Grauert and I. Lieb, ?Das Ramirersche Integral und die Lösung der Gleichung \(\bar \partial \) f = ? imbereich der beschränkten Formen,? Rice Univ. Stud.,56, No. 2, 29?50 (1970). · Zbl 0217.39202
[101] S. J. Greenfield, ?Cauchy-Riemann equations in several variables,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,22, No. 2, 275?314 (1968). · Zbl 0159.37502
[102] S. J. Greenfield, ?Upper bounds on the dimension of extensibility of submanifolds in Cn,? Proc. Amer. Math. Soc.,23, No. 1, 185?189 (1969). · Zbl 0188.39104
[103] F. R. Harvey and R. O. Wells, Jr., ?Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold,? Math. Ann.,197, No. 4, 287?318 (1972). · Zbl 0246.32019 · doi:10.1007/BF01428202
[104] F. R. Harvey and R. O. Wells, Jr., ?Zero sets of nonnegative strictly plurisubharmonic functions,? Math. Ann.,201, No. 2, 165?170 (1973). · Zbl 0253.32009 · doi:10.1007/BF01359794
[105] C. D. Hill, ?A Kontinuitätssatz for \(\bar \partial _M \) and Lewy extendibility,? Indiana Univ. Math. J.,22, No. 4, 339?353 (1972). · doi:10.1512/iumj.1973.22.22028
[106] J. J. Hirschfelder, ?The bidisc is not biholomorphic to the ball,? Amer. Math. Mo.,78, No. 2, 174?175 (1971). · Zbl 0207.08201 · doi:10.2307/2317625
[107] K. Hoffman and H. Rossi, ?The minimal boundary for an analytic polyhedron,? Pacif. J. Math.,12, No. 4, 1347?1353 (1962). · Zbl 0154.33305 · doi:10.2140/pjm.1962.12.1347
[108] L. Hörmander, ?L2-estimates and existence theorems for the operator,? Acta Math.,11, No. 1?2, 89?152 (1965). · Zbl 0158.11002 · doi:10.1007/BF02391775
[109] L. Hörmander, ?Generators of some rings of analytic functions,? Bull. Amer. Math. Soc.,73, No. 6, 943?949 (1967). · Zbl 0172.41701 · doi:10.1090/S0002-9904-1967-11860-3
[110] L. Hörmander, ?LP-estimates for (pluri-) subharmonic functions,? Math. Scand.,20, No. 1, 65?78 (1967). · Zbl 0156.12201 · doi:10.7146/math.scand.a-10821
[111] L. Hörmander and J. Wermer, ?Uniform approximation on compact sets in Cn,? Math. Scand.,23, No. 1, 5?21 (1968). · Zbl 0181.36201 · doi:10.7146/math.scand.a-10893
[112] E. Kallin, ?A nonlocal function algebra,? Proc. Nat. Acad. Sci. USA,49, No. 6, 821?824 (1963). · Zbl 0142.10103 · doi:10.1073/pnas.49.6.821
[113] N. Kerzman, ?Hölder and LP-estimates for solutions of the \(\bar \partial \) -equation in strongly pseudoconvex domains,? Commun. Pure and Appl. Math.,24, No. 3, 301?379 (1971). · Zbl 0205.38702 · doi:10.1002/cpa.3160240303
[114] N. Kerzman, ?The Bergman kernel function. Differentiability at the boundary,? Math. Ann.,195, No. 2, 149?158 (1972). · Zbl 0216.10503 · doi:10.1007/BF01419622
[115] N. Kerzman, ?Remarks on estimates for the \(\bar \partial \) equation,? Lect. Notes Math.,336, 111?124 (1973). · Zbl 0262.35041 · doi:10.1007/BFb0065792
[116] A. W. Knapp and E. M. Stein, ?Intertwining operators for semisimple groups,? Ann. Math.,93, No. 3, 489?578 (1971). · Zbl 0257.22015 · doi:10.2307/1970887
[117] S. Kabayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York (1970), 148 pp.
[118] J. J. Kohn, ?Harmonic integrals on strongly pseudo-convex manifolds. I,? Ann. Math.,78, No. 1, 112?148 (1963). · Zbl 0161.09302 · doi:10.2307/1970506
[119] J. J. Kohn, ?Harmonic integrals on strongly pseudo-convex manifolds. II,? Ann. Math.,79, No. 3, 450?472 (1964). · Zbl 0178.11305 · doi:10.2307/1970404
[120] J. J. Kohn, ?Boundaries of complex manifolds,? Proc. Conf. Complex Analysis, Minneapolis, 1964, Springer-Verlag, Berlin-Heidelberg-New York (1965), pp. 81?94.
[121] J. J. Kohn, ?Integration of complex vector fields,? Bull. Amer. Math. Soc.,78, No. 1, 1?11 (1972). · Zbl 0228.35016 · doi:10.1090/S0002-9904-1972-12829-5
[122] J. J. Kohn, ?Boundary behavior of \(\bar \partial \) on weakly pseudoconvex manifolds of dimension two,? J. Different. Geom.,6, No. 4, 523?542 (1972). · Zbl 0256.35060 · doi:10.4310/jdg/1214430641
[123] J. J. Kohn, ?Global regularity for \(\bar \partial \) on weakly pseudo-convex manifolds,? Trans. Amer. Math. Soc.,181, 273?292 (1973). · Zbl 0276.35071
[124] J. J. Kohn and L. Nirenberg, ?A pseudo-convex domain not admitting a holomorphic support function,? Math. Ann.,201, No. 3, 265?268 (1973). · Zbl 0248.32013 · doi:10.1007/BF01428194
[125] J. J. Kohn and H. Rossi, ?On the extension of holomorphic functions from the boundary of a complex manifold,? Ann. Math.,81, No. 3, 451?472 (1965). · Zbl 0166.33802 · doi:10.2307/1970624
[126] H. König and G. L. Seever, ?The abstract F. and M. Riesz theorem,? Duke Math. J.,36, No. 4, 791?800 (1969). · Zbl 0201.45704 · doi:10.1215/S0012-7094-69-03694-1
[127] W. Koppelman, ?The Cauchy integral for functions of several complex variables,? Bull. Amer. Math. Soc.,73, No. 3, 373?377 (1967). · Zbl 0177.11103 · doi:10.1090/S0002-9904-1967-11757-9
[128] W. Koppleman, ?The Cauchy integral for differential forms,? Bull. Amer. Math. Soc.,73, No. 4, 554?556 (1967). · Zbl 0186.13803 · doi:10.1090/S0002-9904-1967-11744-0
[129] A. Korányi, ?Harmonic functions on Hermitian hyperbolic space,? Trans. Amer. Math. Soc.,135, 507?516 (1969). · doi:10.1090/S0002-9947-1969-0277747-0
[130] A. Korányi and E. M. Stein, ?Fatou’s theorem for generalized halfplanes,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,22, No. 1, 107?112 (1968).
[131] A. Korànyi and E. M. Stein, ?H2 spaces of generalized half-planes,? Stud. Math. (PRL),44, No. 4, 379?388 (1972).
[132] A. Korányi and S. Vagi, ?Singular integrals on homogeneous spaces and some problems of classical analysis,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,25, No. 4, 575?648 (1972).
[133] G. Laville, ?Résolution du Boundary behavior of ? \(\bar \partial \) on weakly pseudoconvex manifolds of dimension two avec croissance dans des ouverts pseudoconvexes étoilés de Cn,? C. R. Acad. Sci. Paris,274, No. 7, A554-A556 (1972). · Zbl 0239.32014
[134] J. Leray, ?Fonction de variables complexes: représentation comme somme de puissances negatives de fonctions linéaries,? Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. e Natur.,20, No. 5, 589?590 (1956).
[135] H. Lewy, ?On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables,? Ann. Math.,64, No. 3, 514?522 (1956). · Zbl 0074.06204 · doi:10.2307/1969599
[136] H. Lewy, ?On hulls of holomorphy,? Commun. Pure and Appl. Math.,13, No. 4, 587?591 (1960). · Zbl 0113.06102 · doi:10.1002/cpa.3160130403
[137] J. Lieb, ?Ein Approximationssatz auf streng pseudokonvexen Gebieten,? Math. Ann.,184, 56?60 (1969). · Zbl 0175.37203 · doi:10.1007/BF01350615
[138] J. Lieb, ?Die Cauchy-Riemannsehen Differentialgleichungen auf streng pseudokonvexen Gebieten: Beschränkte Lösungen,? Math. Ann.,190, No. 1, 6?44 (1970). · Zbl 0199.42702 · doi:10.1007/BF01349966
[139] J. Lieb, ?Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten: Stetige Randwerte,? Math. Ann.,139, No. 3, 241?256 (1972). · Zbl 0231.35055 · doi:10.1007/BF01429877
[140] L. A. Lindahl, ?Fatou’s theorem for symmetric spaces,? Ark. Math.,10, 33?47 (1972). · Zbl 0246.22010 · doi:10.1007/BF02384800
[141] P. Malliavin, ?Comportement à la frontiàre distinguée d’une fonction analytique de plusiers variables,? C. R. Acad. Sci. Paris,268, No. 7, 380?381 (1969).
[142] P. Malliavin, ?Sur la répartition des zéros d’une fonction de la classe de Nevanlinna dans le polydisque,? C. R. Acad. Sci. Paris,271, No. 5, A313-A315 (1970). · Zbl 0217.10802
[143] A. Martineau, ?Distributions et valeurs au bord des fonctions holomorphes,? Proc Internat. Summer Inst., Lisbon (1964).
[144] E. Martinelli. ?Sulla determinazione di una funzione analitica di più variabili complesse in un campo, assegnatane la traccia sulla frontiera,? Ann. Mat. Pura ed Appl.,55, 191?202 (1961). · Zbl 0104.30203 · doi:10.1007/BF02412084
[145] C. B. Morrey, Jr., ?The analytic embedding of abstract real analytic manifolds,? Ann. Math.,68, No. 1, 159?201 (1958). · Zbl 0090.38401 · doi:10.2307/1970048
[146] R. Narasimhan, ?Compact analytical varieties,? Enseign. Math.,14, No. 1, 75?98 (1968). · Zbl 0164.09502
[147] R. Nirenberg, ?On the H. Lewy extension phenomenon,? Trans. Amer. Math. Soc.,168, 337?356 (1972). · Zbl 0241.32006 · doi:10.1090/S0002-9947-1972-0301234-4
[148] R. Nirenberg, ?The cohomology of restrictions of the Global regularity for \(\bar \partial \) on weakly pseudo-convex manifolds complex,? Bull. Amer, Math. Soc.,79, No. 1, 107?109 (1973). · Zbl 0293.35055 · doi:10.1090/S0002-9904-1973-13115-5
[149] R. Nirenberg and R. O. Wells, Jr., ?Approximation theory on differentiable submanifolds of a complex manifold,? Trans. Amer. Math. Soc.,142, 15?35 (1969). · Zbl 0188.39103 · doi:10.1090/S0002-9947-1969-0245834-9
[150] F. Norguet, ?Problèmes sur les différentielles et les courants,? Ann. Inst. Fourier,1, 1?82 (1962).
[151] K. Oka, ?Sur les fonctions de plusiers variables. II. Domaines d’holomorphie,? J. Sci. Horoshima Univ.,7, 115?130 (1937). · Zbl 0017.12204
[152] N. Øvrelid, ?Integral representation formulas and LP-estimates for the \(\bar \partial \) on weakly pseudo-convex manifolds complex-equation,? Math. Scand.,29, No. 1, 137?160 (1971). · Zbl 0227.35069 · doi:10.7146/math.scand.a-11041
[153] N. Øvrelid, ?Generators of the maximal ideals of A(D),? Pacif. J. Math.,39, No. 1, 219?223 (1971). · Zbl 0231.46090 · doi:10.2140/pjm.1971.39.219
[154] E. Ramirez de Arellano, ?Ein Divisionproblem und Randintegraldarstellungen in der komplexen Analysis,? Math. Ann.,184, No. 3, 172?187 (1970). · Zbl 0189.09702 · doi:10.1007/BF01351561
[155] R. M. Range, ?Holomorphic approximation near strictly pseudoconvex boundary points,? Math. Ann.,201, No. 1, 9?17 (1973). · Zbl 0233.32017 · doi:10.1007/BF01432933
[156] R. M. Range and Yum-Tong Siu, ?Uniform estimates for the \(\bar \partial \) on weakly pseudo-convex manifolds complex-equation-equation on domains with piecewise smooth strictly pseudoconvex boundaries,? Math. Ann.,206, No. 4, 325?354 (1973). · Zbl 0248.32015 · doi:10.1007/BF01355986
[157] H.-J. Reiffen, ?Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik,? Math. Ann.,161, No. 5, 315?324 (1965). · Zbl 0141.08803 · doi:10.1007/BF01359970
[158] R. Remmert and K. Stein, ?Eigentliche holomorph Abbildungen,? Math. Z.,73, No. 2, 159?189 (1960). · Zbl 0102.06903 · doi:10.1007/BF01162476
[159] G. Roos, ?Formules intégrales pour les formes différentielles sur Cn. I,? Ann. Scuola Nom. Super. Pisa, Sci. Fis. e Mat.,26, No. 1, 171?179 (1972).
[160] H. Rossi, ?Holomorphically convex sets in several complex variables,? Ann. Math.,74, No. 3, 470?493 (1961). · Zbl 0107.28601 · doi:10.2307/1970292
[161] H. Rossi, ?Differentiable submanifolds of complex euclidean space,? in: Internat. Congr. Mathematicians Repts. Abstrs. [in Russian], Moscow (1966), pp. 91?92.
[162] H. Rossi, ?A generalization of the theorem of Hans Lewy,? Proc. Amer. Math. Soc.,19, No. 2, 436?440 (1968). · Zbl 0182.41404 · doi:10.1090/S0002-9939-1968-0222327-0
[163] W. Rudin, Function Theory in Polydiscs, INC, New York-Amsterdam (1969). · Zbl 0177.34101
[164] W. Rudin and E. L. Stout, ?Boundary properties of functions of several complex variables,? J. Math. and Mech.,14, No. 6, 991?1005 (1965). · Zbl 0147.11601
[165] D. G. Schaeffer, ?An extension of Hartogs’ theorem for domains whose boundary is not smooth,? Proc. Amer. Math. Soc.,25, No. 3, 714?715 (1970). · Zbl 0202.07502
[166] W. Schmid, ?Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen,? Invent. Math.,9, No. 1, 61?80 (1969). · Zbl 0219.32013 · doi:10.1007/BF01389889
[167] M. Schneider, ?Vollständige Durchschnittie in Steinschen Mannigfaltigkeiten,? Math. Ann.,186, No. 3, 191?200 (1970). · Zbl 0184.11003 · doi:10.1007/BF01433277
[168] K. Stein, ?Zur Theorie der Funktionen mehrer komplexer Veränderlichen. Die Regularität-shüllen niederdimensionaler Mannigfaltigkeiten,? Math. Ann.,114, 543?569 (1937). · Zbl 0017.07405 · doi:10.1007/BF01594195
[169] H. S. Shapiro, ?Boundary values of bounded holomorphic functions of several variables,? Bull. Amer. Math. Soc.,77, No. 1, 111?116 (1971). · Zbl 0208.34903 · doi:10.1090/S0002-9904-1971-12624-1
[170] H. S. Shapiro, ?Boundary values of bounded holomorphic functions,? Stud. Math.,44, No. 4, 355?358 (1972).
[171] Yum-Tong Siu, ?Sheaf cohomology with bounds and bounded holomorphic functions,? Proc. Amer. Math. Soc.,21, No. 1, 226?229 (1969). · Zbl 0175.08904 · doi:10.1090/S0002-9939-1969-0237827-8
[172] E. M. Stein, ?The analogues of Fatou’s theorem and estimates for maximal functions,? in: Geometry of Homogeneous Bounded Domains, Rome (1968), pp. 287?307.
[173] E. M. Stein, ?Boundary values of holomorphic functions,? Bull. Amer. Math. Soc.,76, No. 6, 1292?1296 (1970). · Zbl 0211.10202 · doi:10.1090/S0002-9904-1970-12645-3
[174] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton Univ. Press, Princeton, N. J. (1972). · Zbl 0242.32005
[175] E. M. Stein, ?Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups,? Actes. Congr. Int. Mathématiciens, 1970, T. 1, Paris (1971), pp. 173?189.
[176] E. M. Stein, ?Singular integrals and estimates for the Cauchy-Riemann equations,? Bull. Amer. Math. Soc.,79, No. 2, 440?445 (1973). · Zbl 0257.35040 · doi:10.1090/S0002-9904-1973-13205-7
[177] G. Stolzenberg, ?Polynomially and rationally convex sets,? Acta Math.,109, No. 3, 259?289 (1963). · Zbl 0122.08404 · doi:10.1007/BF02391815
[178] G. Stolzenberg, ?Uniform approximation on smooth curves,? Acta Math.,115, No. 3?4, 185?198 (1966). · Zbl 0143.30005 · doi:10.1007/BF02392207
[179] E. L. Stout, ?On some restriction algebras,? in: F. Birtel (ed.), Function Algebras, (Proc. Internat. Symp. Function Algebras, Tulane Univ.), Scott-Foresman and Co., Chicago (1966). · Zbl 0147.11602
[180] E. L. Stout, ?The second Cousin problem with bounded data,? Pacif. J. Math.,26, No. 2, 379?387 (1968). · Zbl 0183.35201 · doi:10.2140/pjm.1968.26.379
[181] E. L. Stout, ?On the multiplicative Cousin problem with bounded data,? Ann. Scuola Norm. Super Pisa, Sci. Fis. e Mat.,27, No. 1, 1?17 (1973). · Zbl 0261.32008
[182] U. Venugopalkrishna, ?Fredholm operators associated with strongly pseudoconvex domains in Cn,? J. Funct. Anal.,9, No. 3, 349?373 (1972). · Zbl 0241.47023 · doi:10.1016/0022-1236(72)90007-9
[183] N. Vormoor, ?Topologische Forsetzung biholomorpher Funktionen auf dem Rande bei beschränkten streng pseudokonvexen Gebieten im Cn mit C?-Rand,? Math. Ann.,204, No. 3, 239?261 (1973). · Zbl 0259.32006 · doi:10.1007/BF01351592
[184] B. M. Weinstock, ?Continuous boundary values of analytic functions of several complex variables,? Proc. Amer. Math. Soc.,21, No. 2, 463?466 (1969). · Zbl 0174.38702 · doi:10.1090/S0002-9939-1969-0237825-4
[185] B. M. Weinstock, ?An approximation theorem for \(\bar \partial \) -closed forms of type (n,n?1),? Proc. Amer. Math. Soc.,26, No. 4, 625?628 (1970). · Zbl 0208.12902
[186] B. M. Weinstock, ?Approximation by holomorphic functions on certain product sets in CN,? Pacif. J. Math.,43, No. 3, 811?822 (1972). · Zbl 0256.32012 · doi:10.2140/pjm.1972.43.811
[187] R. O. Wells, Jr., ?Holomorphic approximation on real-analytic submanifolds of a complex manifold,? Proc. Amer. Math. Soc.,17, No. 6, 1272?1275 (1966). · Zbl 0153.10103 · doi:10.1090/S0002-9939-1966-0200946-3
[188] R. O. Wells, Jr., ?On the local holomorphic hull of a real submanifold in several complex variables,? Commun. Pure and Appl. Math.,19, No. 2, 145?165 (1966). · Zbl 0142.33901 · doi:10.1002/cpa.3160190204
[189] R. O. Wells, Jr., ?Holomorphic hulls and holomorphic convexity of differentiable submanifolds,? Trans. Amer. Math. Soc.,132, No. 1, 245?262 (1968). · doi:10.1090/S0002-9947-1968-0222340-8
[190] R. O. Wells, Jr., ?Holomorphic hulls and holomorphic convexity,? Rice Univ. Stud.,54, No. 4, 75?84 (1968). · Zbl 0177.11402
[191] R. O. Wells, Jr., ?Real-analytic subvarieties and holomorphic approximation,? Math. Ann.,179, No. 2, 130?141 (1969). · Zbl 0167.06704 · doi:10.1007/BF01350125
[192] R. O. Wells, Jr., ?Concerning the envelope of holomorphy of a compact differentiable sub manifold of a complex manifold,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,23, 347?361 (1969).
[193] R. O. Wells, Jr., ?Function theory on differentiable submanifolds,? in: Contributions to Analysis. A collection of Papers Dedicated to Lipman Bers, Academic Press, Inc., New York (1974).
[194] J. Wermer, ?The hull of a curve in Cn,? Ann. Math.,68, No. 3, 550?561 (1958). · Zbl 0084.33402 · doi:10.2307/1970155
[195] J. Wermer, ?Polynomial approximation on an arc in C3,? Ann. Math.,62, No. 2, 269?270 (1955). · Zbl 0067.05001 · doi:10.2307/1969680
[196] J. Wermer, ?Approximation on a disk,? Math. Ann.,155, No. 4, 331?333 (1964). · Zbl 0122.06803 · doi:10.1007/BF01354865
[197] J. Wermer, ?Polynomially convex discs,? Math. Ann.,158, No. 1, 6?10 (1965). · Zbl 0124.06404 · doi:10.1007/BF01370392
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.