×

zbMATH — the first resource for mathematics

Some critical point theorems and applications to semilinear elliptic partial differential equations. (English) Zbl 0375.35026

MSC:
35J60 Nonlinear elliptic equations
35A15 Variational methods applied to PDEs
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Ambrosetti - P.H. Rabinowitz , Dual variational methods in critical point theory and applications , J. Functional Anal. , 14 ( 1973 ), pp. 349 - 381 . MR 370183 | Zbl 0273.49063 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] P.H. Rabinowitz , Variational methods for nonlinear eigenvalue problems, Eigenvalues of Nonlinear Problems , Edizioni Cremonese , Rome ( 1974 ), pp. 141 - 195 . MR 464299
[3] D.C. Clark , A variant of the Lusternik-Schnirelman theory , Ind. Univ. Math. J. , 22 ( 1972 ), pp. 65 - 74 . MR 296777 | Zbl 0228.58006 · Zbl 0228.58006 · doi:10.1512/iumj.1972.22.22008
[4] A. Dold , Lectures on Algebraic Topology , Springer-Verlag , Berlin , 1972 . MR 415602 | Zbl 0234.55001 · Zbl 0234.55001
[5] P.H. Rabinowitz , Free vibrations for a semitinear wave equation , to appear Comm. Pure Appl. Math. MR 470378 | Zbl 0341.35051 · Zbl 0341.35051 · doi:10.1002/cpa.3160310203
[6] J.T. Schwartz , Nonlinear Functional Analysis, lecture notes , Courant Inst. of Math. Sc. , New York Univ. , 1965 . MR 433481
[7] R.S. Palais , Critical point theory and the minimax principle , Proc. Sym. Pure Math ., 15 , A.M.S . Providence, R. I. , ( 1970 ), pp. 185 - 212 . MR 264712 | Zbl 0212.28902 · Zbl 0212.28902
[8] P.H. Rabinowitz , Some aspects of nonlinear eigenvalue problems , Rocky Mtn. Math. J. , 3 ( 1973 ), pp. 161 - 202 . MR 320850 | Zbl 0255.47069 · Zbl 0255.47069 · doi:10.1216/RMJ-1973-3-2-161
[9] J. Leray - J. Schauder , Topologie et equations fonctionnelles , Ann. Sci. Ecole Norm. Sup. , 3 , 51 ( 1934 ), pp. 45 - 78 . Numdam | MR 1509338 | JFM 60.0322.02 · JFM 60.0322.02 · numdam:ASENS_1934_3_51__45_0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.