Sacks, Jonathan; Uhlenbeck, K. The existence of minimal immersions of two-spheres. (English) Zbl 0375.49016 Bull. Am. Math. Soc. 83, 1033-1036 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 7 Documents MSC: 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature PDFBibTeX XMLCite \textit{J. Sacks} and \textit{K. Uhlenbeck}, Bull. Am. Math. Soc. 83, 1033--1036 (1977; Zbl 0375.49016) Full Text: DOI References: [1] Shiing Shen Chern and Samuel I. Goldberg, On the volume decreasing property of a class of real harmonic mappings, Amer. J. Math. 97 (1975), 133 – 147. · Zbl 0303.53049 · doi:10.2307/2373664 [2] James Eells Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751 – 807. [3] James Eells Jr. and Joseph H. Sampson, Variational theory in fibre bundles, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha, Tokyo, 1966, pp. 22 – 33. [4] James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109 – 160. · Zbl 0122.40102 · doi:10.2307/2373037 [5] Philip Hartman and Aurel Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449 – 476. · Zbl 0052.32201 · doi:10.2307/2372496 [6] Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0142.38701 [7] Charles B. Morrey Jr., The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49 (1948), 807 – 851. · Zbl 0033.39601 · doi:10.2307/1969401 [8] Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1 – 16. · Zbl 0138.18302 · doi:10.1016/0040-9383(66)90002-4 [9] Richard S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115 – 132. · Zbl 0143.35203 · doi:10.1016/0040-9383(66)90013-9 [10] Richard S. Palais, Foundations of global non-linear analysis, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 0164.11102 [11] K. Uhlenbeck, Morse theory by perturbation methods with applications to harmonic maps, Trans. Amer. Math. Soc. 267 (1981), no. 2, 569 – 583. · Zbl 0509.58012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.