A counterexample to the rigidity conjecture for polyhedra. (English) Zbl 0375.53034


53C40 Global submanifolds
53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov)
Full Text: DOI Numdam EuDML


[1] R. Bricard, Mémoire sur la théorie de l’octaèdre articulé,J. Math. Pures Appl. (5),3 (1897), 113–148. · JFM 28.0624.01
[2] A. L. Cauchy, Sur les polygones et polyèdres, Second Mémoire,J. École Polytechnique,19 (1813), 87–98.
[3] R. Connelly, An immersed polyhedral surface which flexes,Indiana University Math. J.,25 (1976), 965–972. · Zbl 0342.57008
[4] R. Connelly, The rigidity of suspensions, to appear in theJournal of Differential Topology.
[5] H. Gluck, Almost all simply connected closed surfaces are rigid,Lecture Notes in Math. 438,Geometric Topology, Springer-Verlag (1975), 225–239.
[6] N. H. Kuiper, On C1-isometric imbeddings,Indag. Math. XVII (1954), 545–556 and 683–689. · Zbl 0067.39601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.