zbMATH — the first resource for mathematics

On some relations between a dual pair of multiple objective linear programs. (English) Zbl 0375.90049

90C05 Linear programming
65K05 Numerical mathematical programming methods
Full Text: DOI
[1] Dantzig, G.B.: Linear Programming and Extensions. Princeton, New Jersey 1963. · Zbl 0108.33103
[2] Evans, J.P., andR. E. Steuer: A Revised Simplex Method for Linear Multiple Objective Programs. Mathematical Programming5 (1), 1973, 54–72. · Zbl 0281.90045
[3] Isermann, H.: Proper Efficiency and the Linear Vector Maximum Problem. Operations Research22 (1), 1974, 189–191. · Zbl 0274.90024
[4] -: Ein Algorithmus zur Lösung linearer Vektormaximumprobleme, In: Proceedings in Operations Research5, hrsg. vonJ Kohlas, O. Seifert, P. Stähly undH.-J. Zimmermann. Würzburg-Wien 1976, 55–65. · Zbl 0326.90035
[5] –: The Relevance of Duality in Linear Multiple Objective Programming: In: North-Holland/TIMS Studies in the Management Sciences, Vol. 6, 1977, 241–262.
[6] Krekó, B.: Linear Programming, London 1968.
[7] Mangasarian, O.L.: Nonlinear Programming, New York 1969. · Zbl 0194.20201
[8] Simonnard, M.: Linear Programming, Englewood Cliffs, New Jersey 1966. · Zbl 0154.19506
[9] Tschernikow, S.N.: Lineare Ungleichungen, Berlin 1971. · Zbl 0221.15013
[10] Zeleny, M.: Compromise Programming. In: Multiple Criteria Decision Making, ed. byJ.L. Cochrane andM. Zeleny. Columbia, South Carolina 1973, 262–301.
[11] -: Linear Multiobjective Programming, Berlin-Heidelberg-New York 1974. · Zbl 0325.90033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.