×

zbMATH — the first resource for mathematics

Extremal problems in graph theory. (English) Zbl 0376.05041

MSC:
05C35 Extremal problems in graph theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berge, C. R. Acad. Sci. Paris 247 pp 258– (1958)
[2] Bollobás, Acta Math. Acad. Sci. Hung. 16 pp 447– (1965)
[3] Bollobás, Am. Math. Monthly 74 pp 178– (1967)
[4] Weakly k-saturated graphs. Proc. Coll. Graph Theory, Ilmenau (1967) 25–31.
[5] Bollobás, Math. Proc. Camb. Philos. Soc. 79 pp 19– (1976)
[6] Extremal Graph Theory. Academic Press (to appear). · Zbl 0419.05031
[7] Bollobás, Q. J. Math. Oxford 21 pp 25– (1976)
[8] Bollobás, Math. Proc. Camb. Philos. Soc. 79 pp 221– (1976)
[9] Bollobás, Utilitas Math. 6 pp 343– (1974)
[10] Bollobás, Discrete Math. 13 pp 97– (1975)
[11] Bosak, J. Combinatorial Theory Ser. B 16 pp 57– (1974)
[12] Bosak, Mat. Časopis Sloven 21 pp 14– (1971)
[13] and , Degrees and matchings. Université de Montréal preprint (Sept. 1972).
[14] Erdös, Casopis Pest. Math. 94 pp 290– (1969)
[15] Erdös, Mat. Lapok 21 pp 249– (1970)
[16] Erdös, Acta Math. Acad Sci. Hung. 10 pp 337– (1958)
[17] Erdös, Can. J. Math. 18 pp 106– (1966) · Zbl 0137.43202
[18] Erdös, Am. Math. Monthly 71 pp 1107– (1964)
[19] Erdös, J. London Math. Soc. 35 pp 85– (1960)
[20] Graph Theory. Addison-Wesley, Reading, Mass. (1969).
[21] Moon, Publ. Math. Inst. Hung. Acad. Sci. 7 pp 283– (1962)
[22] Nordhaus, Can. J. Math. 15 pp 33– (1963) · Zbl 0115.17403
[23] Sauer, J. Combinatorial Theory 9 pp 423– (1970)
[24] Sauer, J. Combinatorial Theory 10 pp 109– (1971)
[25] The largest number of edges of a graph such that not more than g intersect in a point or more than n are independent. Comb. Math. and Appl. A. P. (1971) 253–257.
[26] Turán, Colloq. Math. 3 pp 19– (1954)
[27] Tutte, J. London Math. Soc. 22 pp 107– (1947)
[28] Weinstein, Can. J. Math. 15 pp 106– (1963) · Zbl 0112.14803
[29] Wessel, Wiss. Z. Th. Ilmenau 12 pp 253– (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.