Classification of the primitive representations of the Galois group of local fields. (English) Zbl 0376.12003


11R32 Galois theory
11R52 Quaternion and other division algebras: arithmetic, zeta functions
20C25 Projective representations and multipliers
11S20 Galois theory
Full Text: DOI EuDML


[1] Curtis, C.W., Reiner, I.: Representation theory. New York-London: Interscience 1962 · Zbl 0131.25601
[2] Diendonné, J.: La géométrie des groupes classiques, 3rd ed. Berlin-Heidelberg-New York: Springer 1971
[3] Hasse, H.: Zahlentheorie, 2. Aufl. Berlin: Akademie Verlag 1963 · Zbl 0107.24805
[4] Iwasawa, K.: On Galois groups of local fields. Trans. Am. Math. Soc.80, 448-469 (1955) · Zbl 0074.03101 · doi:10.1090/S0002-9947-1955-0075239-5
[5] Kamenski, A.G.: On the representations of theW-group of a local field (Russian). Uspechi mat. Nauk30, 245-250 (1975)
[6] Koch, H.: Die irreduziblen Darstellungen von Primzahlgrad der Galoisschen Gruppe eines lokalen Körpers. Klassenberichte d. Akademie d. Wissenschaften d. DDR 18N, 59-70 (1976)
[7] Krasner, M.: Sur la representation exponentielle dans les corps relativement galoisiens de nombres ?-adiques. Acta Arithmetica3, 133-173 (1939) · JFM 65.0113.01
[8] Pieper, H.: Die Einheitengruppe eines zahmverzweigten galoisschen lokalen Körpers als Galois-Modul. Math. Nachr.54, 173-210 (1972) · Zbl 0263.12009 · doi:10.1002/mana.19720540113
[9] Rigby, J.F.: Primitive linear groups containing a normal nilpotent subgroup larger than the centre of the group. J. London Math. Soc.35, 389-400 (1960) · Zbl 0096.25205 · doi:10.1112/jlms/s1-35.4.389
[10] Serre, J-P.: Cohomologie Galoisienne. Lecture Notes in Math. 5. Berlin-Heidelberg-New York: Springer 1964 · Zbl 0143.05901
[11] Serre, J-P.: Representation lineaires des group finis. Paris: Hermann 1967
[12] Suprunenko, D.A.: Matrix groups. Nauka, Moscow 1972 (Russian)
[13] Weil, A.: Exercises dyadiques. Inventiones math.27, 1-22 (1974) · Zbl 0307.12017 · doi:10.1007/BF01389962
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.