Springer, T. A. A construction of representations of Weyl groups. (English) Zbl 0376.17002 Invent. Math. 44, 279-293 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 10 ReviewsCited in 139 Documents MSC: 17B15 Representations of Lie algebras and Lie superalgebras, analytic theory 17B99 Lie algebras and Lie superalgebras 22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods 20C99 Representation theory of groups 20J05 Homological methods in group theory × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Benard, M.: On the Schur indices of characters of the exceptional Weyl groups. Ann. of Math.94, 89-107 (1971) · doi:10.2307/1970736 [2] Borel, A., Carter, R., Curtis, C.W., Iwahori, N., Springer, T.A., Steinberg, R.: Seminar in algebraic groups and related finite groups. Lecture Notes in Math. 131. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0192.36201 [3] Hotta, R., Springer, T.A.: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups. Inventiones math.41, 113-127 (1977) · Zbl 0389.20037 · doi:10.1007/BF01418371 [4] SGA4, Théorie des topos et cohomologie étale des schémas (Séminaire dirigé par M. Artin, A. Grothendieck et J.L. Verdier), Lecture Notes in Math. 269. Berlin-Heidelberg-New York: Springer 1972/73 [5] Shoji, T.: The conjugacy classes of Chevalley groups of type (F 4) over finite fields of characteristicp ? 2. Journal Fac. Sc. Tokyo Univ.21, 1-17 (1974). · Zbl 0279.20038 [6] Spaltenstein, N.: On the fixed point set of a unipotent element on the variety of Borel subgroups. Topology16, 203-204 (1977) · Zbl 0445.20021 · doi:10.1016/0040-9383(77)90022-2 [7] Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Inv. Math.36, 173-207 (1976) · Zbl 0374.20054 · doi:10.1007/BF01390009 [8] Steinberg, R.: On the desingularization of the unipotent variety. Inventiones math.36, 209-224 (1976) · Zbl 0352.20035 · doi:10.1007/BF01390010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.