zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Decay of solutions of some nonlinear evolution equations. (English) Zbl 0376.34051

34G99ODE in abstract spaces
Full Text: DOI
[1] Biroli, M.: Solutiones presque periodiques des inequations devolution paraboliques. Ann. mat. 88, 51-70 (1971) · Zbl 0221.35037
[2] Caughy, T. K.; Ellison, J.: Existence, uniqueness and stability of solutions of a class of nonlinear partial differential equations. J. math. Anal. appl. 51, 1-32 (1975) · Zbl 0306.35029
[3] Dubinskii, J. A.: Quasilinear elliptic and parabolic equations of arbitrary order. Russian math. Surveys 23, 45-91 (1968)
[4] Greenberg, J. M.; Maccamy, R. C.; Mizel, V. J.: On the existence, uniqueness and stability of solutions of the equation ${\lambda}'(ux)uxx + {\lambda}$uxtx = \varrho0utt. J. math. Mech. 17, 707-728 (1968)
[5] Lions, J. L.: Quelques méthodes des résolution des problèmes aux limites non linéaires. (1969)
[6] M. Nakao, On the existence of bounded solution for nonlinear evolution equation of parabolic type, to appear. · Zbl 0362.35048
[7] M. Nakao, Asymptotic stability of bounded or almost periodic solutions of the wave equation with a nonlinear dissipative term, J. Math. Anal. Appl., in press. · Zbl 0347.35013
[8] M. Nakao, Convergence of solutions of the wave equation with a nonlinear dissipative term to the steady state, to appear. · Zbl 0359.35052
[9] Nakao, M.; Nanbu, T.: Existence of global (bounded) solutions for some nonlinear evolution equations of second order. Math. rep. College gen. Educ. kyushu univ. 10, No. No. 1, 67-75 (1975)
[10] Prouse, G.: Periodic or almost periodic solutions of a nonlinear functional equation, IV. Rend. accad. Naz. lincei 54, 3-10 (1968)
[11] Strauss, W. A.: On continuity of functions with values in various Banach spaces. Pacific J. Math. 19, No. No. 3, 543-551 (1966) · Zbl 0185.20103
[12] Strauss, W. A.: Evolution equations non-linear in the time derivative. J. math. Mech. 15, No. No. 1. 1, 49-82 (1966) · Zbl 0138.40001
[13] Strauss, W. A.: The energy method in nonlinear partial differential equations. Notas mat. (1969) · Zbl 0233.35001
[14] Tsutsumi, M.: Some nonlinear evolution equations of second order. Proc. Japan acad. 47, 950-955 (1971) · Zbl 0258.35017
[15] Tsutsumi, M.: Existence and non existence of a global solution for nonlinear parabolic equations. Publ. res. Inst. math. Sci., Kyoto univ. 8, 211-229 (1972) · Zbl 0248.35074