×

zbMATH — the first resource for mathematics

Sur les groupes \(A(n)\). (French) Zbl 0377.13001

MSC:
13A99 General commutative ring theory
20J05 Homological methods in group theory
13D15 Grothendieck groups, \(K\)-theory and commutative rings
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] M. ARTIN , Grothendieck Topologies , Harvard University, 1962 . Zbl 0208.48701 · Zbl 0208.48701
[2] H. BASS , Lectures on topics in algebraic K-theory , Tata Institute of Fundamental Research, Bombay, 1967 . MR 43 #4885 | Zbl 0226.13006 · Zbl 0226.13006
[3] Z.I. BOREVITCH et I.R. CHAFAREVITCH , Théorie des Nombres , Gauthier-Villars, Paris, 1967 . MR 34 #5734 | Zbl 0145.04901 · Zbl 0145.04901
[4] A. MICALI et Ph. REVOY , Algèbres de Clifford séparables , Montpellier 1969 (non publié), M.R. 46 ( 1973 ), 198 b. · Zbl 0207.34401
[5] A. MICALI et Ph. REVOY , Modules quadratiques , livre en préparation. · Zbl 0436.10011
[6] A. MICALI et O.E. VILLAMAYOR , Sur les algèbres de Clifford , Ann. Sc. Ec. Normale Sup., 4è série, 1 ( 1968 ), 271-304. Numdam | MR 41 #244 | Zbl 0182.05304 · Zbl 0182.05304 · numdam:ASENS_1968_4_1_2_271_0 · eudml:81833
[7] A. MICALI et O.E. VILLAMAYOR , Sur les algèbres de Clifford II , Journal für die Reine und Andgewandte Mathematik, 242 ( 1970 ), 61-90. Article | MR 41 #6902 | Zbl 0252.15015 · Zbl 0252.15015 · crelle:GDZPPN002184788 · eudml:151012
[8] C. SMALL , The group of quadratic extensions , J. of Pure and Applied Algebra 2 ( 1972 ), 83-105. MR 46 #5297 | Zbl 0242.13005 · Zbl 0242.13005 · doi:10.1016/0022-4049(72)90015-1
[9] J.-D. THEROND , Sur deux conjectures de Small , ce volume, p. 103-115. Numdam | Zbl 0343.13002 · Zbl 0343.13002 · numdam:MSMF_1976__48__117_0 · eudml:94735
[10] J.-D. THEROND , Le groupe des extensions quadratiques séparables libres de l’anneau des entiers de Q(\surd d) , C.R.Acad. Sc. Paris, 281 ( 1975 ) 939-943. MR 53 #13159 | Zbl 0343.13003 · Zbl 0343.13003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.