×

zbMATH — the first resource for mathematics

Bernoulli maps of the interval. (English) Zbl 0377.28010

MSC:
28D05 Measure-preserving transformations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. L. Adler,f-expansions revisited, Springer Lecture Notes318, 1973, pp. 1–5.
[2] D. V. Anosov,Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math.90 (1967). · Zbl 0176.19101
[3] R. Bowen,Bernoulli equilibrium states for Axiom A diffeomorphisms, Math. Systems Theory8 (1975), 289–294. · Zbl 0304.28012 · doi:10.1007/BF01780576
[4] N. Friedman and D. Ornstein,On the isomorphism of weak Bernoulli transformations, Advances in Math.5, (1970), 365–394. · Zbl 0203.05801 · doi:10.1016/0001-8708(70)90010-1
[5] G. Gallavotti and D. Ornstein,Billiards and Bernoulli schemes, Comm. Math. Phys.38 (1974), 83–101. · Zbl 0313.58017 · doi:10.1007/BF01651505
[6] A. Lasota and J. A. Yorke,On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc.186, (1973), 481–488. · Zbl 0298.28015 · doi:10.1090/S0002-9947-1973-0335758-1
[7] T. Li and J. A. Yorke,Ergodic transformations from an interval into itself, to appear. · Zbl 0371.28017
[8] D. Ornstein and B. Weiss,Geodesic flows are Bernoullian, Israel J. Math.14, (1973), 184–198. · Zbl 0256.58006 · doi:10.1007/BF02762673
[9] W. Parry,On the \(\backslash\)-expansion of real numbers, Acta Math. Acad. Sci. Hungar.11, (1960), 401–416. · Zbl 0099.28103 · doi:10.1007/BF02020954
[10] M. Ratner,Anosov flows with Gibbs measures are also Bernoullian, Israel J. Math.17, (1974), 380–391. · Zbl 0304.28011 · doi:10.1007/BF02757140
[11] A. Renyi,Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar.8, (1957), 472–493.
[12] V. A. Roklin,Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl., Ser. 2,39, (1964), 1–36. · Zbl 0154.15703
[13] D. Ruelle,A measure associated with Axiom A attractors, Amer. J. Math.39, (1964), 1–36.
[14] Ya. G. Sinai,Classical dynamical systems with countably multiple Lebesgue spectrum II, Amer. Math. Soc. Transl., Ser. 2,68, (1968), 34–88. · Zbl 0213.34002
[15] M. Smorodinsky,\(\beta\)-automorphisms are Bernoulli shifts, Acta Math. Acad. Sci. Hungar.24 (1973), 273–278. · Zbl 0268.28007 · doi:10.1007/BF01958037
[16] S. M. Ulam,A Collection of Mathematical Problems, Interscience, New York, 1960. · Zbl 0086.24101
[17] P. Walters,Ergodic theory–introductory lectures, Springer Lecture Notes458, 1975. · Zbl 0299.28012
[18] P. Walters,Invariant measures and equilibrium states for some mappings which expand distances, to appear. · Zbl 0375.28009
[19] K. Wilkinson,Ergodic properties of a class of piecewise linear transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete31, (1974), 303–328. · Zbl 0299.28015 · doi:10.1007/BF00532869
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.