zbMATH — the first resource for mathematics

On an approximate solution for quasilinear parabolic equations. (English) Zbl 0377.35036

35K55 Nonlinear parabolic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35A35 Theoretical approximation in context of PDEs
Full Text: EuDML
[1] K. Rektorys: On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables. Czech. Math. J., 21 (96) 1971, 318-339. · Zbl 0217.41601
[2] J. Kačur: Method of Rothe and nonlinear parabolic equations of arbitrary order. I, II. Czech. Math. J., to appear.
[3] J. Nečas: Application of Rothe’s method to abstract parabolic equations. Czech. Math. J., Vol. 24 (99) (1974), No 3, 496-500. · Zbl 0311.35059
[4] J. Kačur: Application of Rothe’s method to nonlinear evolution equations. Mat. Časopis Sloven. Akad. Vied, 25, 1975, No 1, 63-81. · Zbl 0298.34058
[5] E. Rothe: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben. Math. Ann. 102, 1930. · JFM 56.1076.02
[6] А. М. Ильин А. С. Калашников О. А. Олейник: Линейные уравнения второго порядка параболического типа. YMH 17, вып. 3, 1962, 3-146. · Zbl 1226.30001
[7] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Prague, 1967. · Zbl 1225.35003
[8] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris, 1969. · Zbl 0189.40603
[9] Л. А. Люстерник В. И. Соболев: Элементы функционального анализа. Москва 1965. · Zbl 1225.00032
[10] K. Yosida: Functional analysis. Springer-Verlag, 1965. · Zbl 0126.11504
[11] J. Douglas T. Dupond: Galerkin methods for parabolic equations. SIAM J. Numer. Anal., vol. 7, N-4, December 1970. · Zbl 0224.35048
[12] H. Gajewski K. Gröger K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Berlin, 1974. · Zbl 0289.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.