zbMATH — the first resource for mathematics

Deformation theory and quantization. II: Physical applications. (English) Zbl 0377.53025

53D55 Deformation quantization, star products
53D05 Symplectic manifolds, general
81S10 Geometry and quantization, symplectic methods
Full Text: DOI
[1] Segal, I.E.; Inönu, E.; Wigner, E.P.; Inönu, E.; Wigner, E.P., (), 18, 119, (1951)
[2] Gerstenhaber, M., Ann. math., 79, 59, (1964)
[3] Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization. I. deformations of symplectic structures, Ann. phys. (N.Y.), 111, 61, (1978), henceforth referred to as I · Zbl 0377.53024
[4] Weyl, H., The theory of groups and quantum mechanics, (1931), Dover New York · JFM 58.1374.01
[5] Wigner, E.P., Phys. rev., 40, 749, (1932)
[6] Moyal, J.E.; Groenewold, H.J., (), Physica, 12, 405, (1946), See also
[7] Liu, K.Chi; Agarwal, G.S.; Wolf, E., J. math. phys., Phys. rev. D, 2, 2161, (1970), and references quoted there. See also
[8] Remler, E.; de Groot, S.R.; Suttorp, L.G.; de Groot, S.R., La transformation de Weyl et la fonction de Wigner: une forme alternative de la mécanique quantique, Ann. phys. (N.Y.), 95, 455, (1974), North-Holland Amsterdam, See also
[9] Prugovečki, E.; Prugovečki, E.; Ali, S.T.; Prugovečki, E., J. math. phys., J. math. phys., J. math. phys., 18, 219, (1977), The nonlocality of the equations of motion provides the basis for the introduction of fuzzy phase space, in the sense of · Zbl 0364.46055
[10] The map J is Souriau’s “moment”
[11] Dirac, P.A.M., ()
[12] Györgyi, G., Nuovo cimento A, 53, 717, (1968), See, e.g.
[13] Fronsdal, C.; Huff, R.W., Phys. rev. D, 7, 3609, (1973), See, e.g.
[14] Martin, C., Lett. math. phys., 1, 155, (1976), See
[15] Flato, M.; Lichnerowicz, A.; Sternheimer, D., J. math. phys., 17, 1754, (1976)
[16] Segal, I.E., (), 99-117, and earlier references quoted therein
[17] Agarwal, G.S.; Wolf, E.; Agarwal, G.S.; Wolf, E., Phys. rev. D, Phys. rev. D, 2, 2206, (1970), One simply substitutes in (2-4) formal powers of the field-theoretical Poisson bracket (using higher-order functional derivatives). This has of course to be justified. See also · Zbl 1227.81198
[18] \scE. Remler, preprint, College of William and Mary, 1977.
[19] Guenin, M.; Flato, M.M.; Guenin, M., Phys. lett., Helv. phys. acta, 50, 117, (1977), Ref. 8
[20] \scR. Casalbuoni, CERN preprint TH. 2139 (March 1976). \scK. Drühl, Max-Planck-Institute preprint, Starnberg, December 1976. \scA. Sudbery, Univ. of York preprint, October 1975.
[21] Gervais, J.L.; Sakita, B., Nucl. phys. B, 34, (1971)
[22] Wess, J.; Zumino, B.; Schwinger, J.; Schwinger, J.; Flato, M.; Hillion, P., (), Phys. rev. D, 1, 1667, (1970), See also
[23] ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.