×

A model nonlinear problem having a continuous locus of singular points. (English) Zbl 0378.34048


MSC:

34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ackerberg, Boundary layer problems exhibiting resonance, Studies in Appl. Math. 12 pp 277– (1970) · Zbl 0198.12901 · doi:10.1002/sapm1970493277
[2] Boglaev, The two-point problem for a class of ordinary differential equations with a small parameter coefficient of the derivative, USSR Computational Math. and Math. Phys. 10 pp 191– (1970) · Zbl 0267.34052 · doi:10.1016/0041-5553(70)90014-5
[3] Coddington, A boundary value problem for a nonlinear differential equation with a small parameter, Proc. Amer. Math. Soc. 3 pp 73– (1952) · Zbl 0046.09503 · doi:10.1090/S0002-9939-1952-0046517-3
[4] Cook, Resonance in a boundary value problem of singular perturbation type, Studies in Appl. Math. 52 pp 129– (1973) · Zbl 0264.34070 · doi:10.1002/sapm1973522129
[5] Dorr, Some examples of singular perturbation problems with turning points, SIAM J. Math. Anal. 1 pp 141– (1970) · Zbl 0211.12005 · doi:10.1137/0501014
[6] Dorr, Singular perturbations of nonlinear boundary value problems with turning points, J. Math. Anal Appl. 29 pp 273– (1970) · Zbl 0169.10701 · doi:10.1016/0022-247X(70)90079-X
[7] Dorr, Applications of the maximum principle to singular perturbation problems, SIAM Rev. 15 pp 43– (1973) · Zbl 0293.34086 · doi:10.1137/1015002
[8] Fife, Transition layers in singular perturbation problems, J. Differential Equations 15 pp 77– (1974) · Zbl 0259.34067 · doi:10.1016/0022-0396(74)90088-6
[9] Howes, Singularly perturbed nonlinear boundary value problems with turning points, SIAM J. Math. Anal. 6 pp 644– (1975) · Zbl 0307.34055 · doi:10.1137/0506057
[10] Howes, A class of boundary value problems whose solutions possess angular limiting behavior, Rocky Mtn. J. Math. 6 pp 591– (1976) · Zbl 0348.34044 · doi:10.1216/RMJ-1976-6-4-591
[11] Howes, A boundary layer theory for a class of linear and nonlinear boundary value problems, ibid. 7 pp 491– (1977) · Zbl 0368.34023
[12] Howes, Singularly perturbed nonlinear boundary value problems with turning points, II, SIAM J. Math. Anal. 9 (1978) · Zbl 0377.34031
[13] Howes, Boundary and interior layer behavior and their interaction, Amer. Math. Soc. Memoirs (1978) · Zbl 0385.34010 · doi:10.1090/memo/0203
[14] Jackson, Subfunctions and second order ordinary differential inequalities, Advances in Math. 2 pp 307– (1968) · Zbl 0197.06401 · doi:10.1016/0001-8708(68)90022-4
[15] Kreiss, Remarks on singular perturbations with turning points, SIAM J. Math. Anal. 5 pp 230– (1974) · Zbl 0302.34074 · doi:10.1137/0505025
[16] Lakin, Boundary value problems with a turning point, Studies in Appl. Math. 51 pp 261– (1972) · Zbl 0257.34015 · doi:10.1002/sapm1972513261
[17] Matkowsky, On boundary layer problems exhibiting resonance, SIAM Rev. 17 pp 82– (1975) · doi:10.1137/1017005
[18] Nagumo, Über die Differentialgleichung y”=f(x,y,y’), Proc. Phys. Math. Soc. Japan 19 pp 861– (1937) · JFM 63.1021.04
[19] O’Malley, On boundary value problems for a singularly perturbed differential equation with a turning point, SIAM J. Math. Anal. 1 pp 479– (1970) · Zbl 0208.12301 · doi:10.1137/0501041
[20] O’Malley, Introduction to Singular Perturbations (1974)
[21] Olver, Asymptotic Methods and Singular Perturbations pp 105– (1976)
[22] Pearson, On a differential equation of boundary layer type, J. Math. and Phys. 47 pp 134– (1968) · Zbl 0167.15801 · doi:10.1002/sapm1968471134
[23] Vishik, Initial jump for nonlinear differential equations containing a small parameter, Soviet Math. Dokl. 1 pp 749– (1976)
[24] Wasow, Asymptotic Expansions for Ordinary Differential Equations (1965) · Zbl 0133.35301
[25] Watts, A singular perturbation problem with a turning point, Bull. Austral. Math. Soc. 5 pp 61– (1971) · Zbl 0223.34051 · doi:10.1017/S0004972700046888
[26] Zauderer, Boundary value problems for a second order differential equation with a turning point, Studies in Appl. Math. 51 pp 411– (1972) · Zbl 0292.34059 · doi:10.1002/sapm1972514411
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.