Aron, Richard M.; Berner, Paul D. A Hahn-Banach extension theorem for analytic mappings. (English) Zbl 0378.46043 Bull. Soc. Math. Fr. 106, 3-24 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 22 ReviewsCited in 113 Documents MSC: 46G99 Measures, integration, derivative, holomorphy (all involving infinite-dimensional spaces) 46B10 Duality and reflexivity in normed linear and Banach spaces 58B10 Differentiability questions for infinite-dimensional manifolds × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] ARON (R. M.) and SCHOTTENLOHER (M. R.) . - Compact holomorphic mappings on Banach spaces and the approximation property , J. Funct. Anal., t. 21, 1976 , p. 7-30. MR 53 #6323 | Zbl 0328.46046 · Zbl 0328.46046 · doi:10.1016/0022-1236(76)90026-4 [2] BOLAND (P.) . - Holomorphic functions on nuclear spaces , Trans. Amer. math. Soc., t. 209, 1975 , p. 275-281. MR 52 #8931 | Zbl 0317.46036 · Zbl 0317.46036 · doi:10.2307/1997385 [3] DAY (M.) . - Normed linear spaces . Third Edition. - Springer-Verlag, Berlin, 1973 (Ergebnisse der mathematik, 21). MR 49 #9588 | Zbl 0268.46013 · Zbl 0268.46013 [4] DINEEN (S.) . - Holomorphically complete locally convex topological vector spaces , ”Séminaire Pierre Lelong: analyse”, 1971 / 1972 , p. 77-111. -Berlin, Springer-Verlag, 1973 (Lecture Notes in Mathematics, 332). MR 51 #13684 | Zbl 0278.46005 · Zbl 0278.46005 [5] DUNFORD (N.) and SCHWARTZ (J. T.) . - Linear operators . Part I. - New York, Interscience Publishers, 1966 (Pure and applied mathematics. Interscience, 7). [6] JOSEFSON (B.) . - Bounding subsets of l\infty (A) , Thesis, Uppsala University, 1975 . [7] LINDENSTRAUSS (J.) . - Extension of compact operators . - Providence, American mathematical Society, 1964 (Memoirs of the American mathematical Society, 48). MR 31 #3828 | Zbl 0141.12001 · Zbl 0141.12001 [8] LINDESTRAUSS (J.) and TZAFRIRI (L.) . - On the complemented subspaces problem , Israel J. Math., t. 9, 1971 , p. 263-269. MR 43 #2474 | Zbl 0211.16301 · Zbl 0211.16301 · doi:10.1007/BF02771592 [9] NACHBIN (L.) . - Topology on spaces of holomorphic mappings . - Berlin, Springer-Verlag, 1969 (Ergebnisse der Mathematik, 47). MR 40 #7787 | Zbl 0172.39902 · Zbl 0172.39902 [10] NACHBIN (L.) . - Recent developments in infinite dimensional holomorphy , Bull. Amer. math. Soc., t. 79, 1973 , p. 625-640. Article | MR 48 #871 | Zbl 0279.32017 · Zbl 0279.32017 · doi:10.1090/S0002-9904-1973-13244-6 [11] NOVERRAZ (P.) . - Pseudo-convexité, convexité polynomiale et domaines d’holomorphie en dimension infinie . - Amsterdam, North-Holland publishing company, 1973 (North-Holland mathematics Studies, 3; Notas de Matematica, 48). MR 50 #10814 | Zbl 0251.46049 · Zbl 0251.46049 [12] PELCZYNSKI (A.) . - A theorem of Dunford-Pettis type for polynomial operators , Bull. Acad. Polon. Sc., t. 11, 1963 , p. 379-386. MR 28 #4370 | Zbl 0117.33203 · Zbl 0117.33203 [13] RYAN (R.) . - Thesis , Trinity College, University of Dublin. · Zbl 1329.70010 [14] SCHAEFER (H. H.) . - Topological vector spaces . - New York, MacMillan Compagny, 1966 (MacMillan Series in advanced Mathematics); and Berlin, Springer-Verlag, 1971 (Graduate Texts in Mathematics, 3). Zbl 0141.30503 · Zbl 0141.30503 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.