Ciarlet, Philippe G. Interpolation error estimates for the reduced Hsieh-Clough-Tocher triangle. (English) Zbl 0378.65010 Math. Comput. 32, 335-344 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 15 Documents MSC: 65D05 Numerical interpolation 65N15 Error bounds for boundary value problems involving PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 41A25 Rate of convergence, degree of approximation PDF BibTeX XML Cite \textit{P. G. Ciarlet}, Math. Comput. 32, 335--344 (1978; Zbl 0378.65010) Full Text: DOI OpenURL References: [1] James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809 – 820. · Zbl 0226.65073 [2] P. G. Ciarlet, Sur l’élément de Clough et Tocher, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 19 – 27 (French, with loose English summary). · Zbl 0306.65070 [3] Philippe G. Ciarlet, Numerical analysis of the finite element method, Les Presses de l’Université de Montréal, Montreal, Que., 1976. Séminaire de Mathématiques Supérieures, No. 59 (Été 1975). · Zbl 0353.73067 [4] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058 [5] P. G. Ciarlet and P.-A. Raviart, General Lagrange and Hermite interpolation in \?\(^{n}\) with applications to finite element methods, Arch. Rational Mech. Anal. 46 (1972), 177 – 199. · Zbl 0243.41004 [6] R. W. CLOUGH & J. L. TOCHER, ”Finite element stiffness matrices for analysis of plates in bending,” in Proc. Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., Ohio, 1965. [7] J. NEČAS, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, 1967. · Zbl 1225.35003 [8] Peter Percell, On cubic and quartic Clough-Tocher finite elements, SIAM J. Numer. Anal. 13 (1976), no. 1, 100 – 103. · Zbl 0319.65064 [9] P.-A. RAVIART, Méthode des Eléments Finis, Lecture Notes (D.E.A. Analyse Numérique), Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie (Paris VI), 1972. [10] Alexander Ženíšek, Interpolation polynomials on the triangle, Numer. Math. 15 (1970), 283 – 296. · Zbl 0216.38901 [11] A. ŽENÍŠEK, ”A general theorem on triangular finite \( {C^{(m)}}\)-elements,” Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-2, 1974, pp. 119-127. [12] O. C. Zienkiewicz, The finite element method in engineering science, McGraw-Hill, London-New York-Düsseldorf, 1971. The second, expanded and revised, edition of The finite element method in structural and continuum mechanics. · Zbl 0237.73071 [13] M. ZLÁMAL, ”On the finite element method,” Numer. Math., v. 12, 1968, pp. 394-409. · Zbl 0176.16001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.