×

The alternating basis algorithm for assignment problems. (English) Zbl 0378.90097


MSC:

90C35 Programming involving graphs or networks
90C10 Integer programming
65K05 Numerical mathematical programming methods
90C05 Linear programming

Software:

NETGEN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R.S. Barr, ”Streamlining primal simplex transportation codes”, Research Rep., Center for Cybernetic Studies, University of Texas, Austin, TX, to appear.
[2] R.S. Barr, F. Glover and D. Klingman, ”Enhancements to spanning tree labeling procedures for network optimization”, Rep. 262, Center for Cybernetic Studies, University of Texas, Austin, TX. · Zbl 0403.90083
[3] R.S. Barr, F. Glover and D. Klingman, ”An improved version of the out-of-kilter method and a comparative study of computer codes”,Mathematical Programming 7 (1) (1974) 60–87. · Zbl 0313.90044 · doi:10.1007/BF01585504
[4] G. Bradley, G. Brown and G. Graves, ”A comparison of storage structure for primal network codes”, presented at ORSA/TIMS conference, Chicago, April 1975.
[5] G. Bradley, G. Brown and G. Graves, ”Tailoring primal network codes to classes of problems with common structure”, ORSA/TIMS conference, Las Vegas (1975).
[6] W.H. Cunningham, ”A network simplex method”, Tech. Rep. No. 207, Dept. of Mathematical Sciences, Johns Hopkins University (1974). · Zbl 0352.90039
[7] F. Glover and D. Klingman, ”Locating stepping-stone paths in distribution problems via the predecessor index method”,Transportation Science 4 (1970) 220–226. · doi:10.1287/trsc.4.2.220
[8] F. Glover, D. Karney and D. Klingman, ”Implementation and computational study on start procedures and basis change criteria for a primal network code”,Networks 4 (3) (1974) 191–212. · Zbl 0282.68020 · doi:10.1002/net.3230040302
[9] F. Glover, D. Karney and D. Klingman, ”Augmented predecessor index method for location stepping stone paths and assigning dual prices in distribution problems”,Transportation Science 6 (1) (1972) 171–181. · doi:10.1287/trsc.6.2.171
[10] F. Glover, D. Karney, D. Klingman and A. Napier, ”A computational study on start procedures, basis change criteria, and solution algorithms for transportation problems”,Management Science 20 (5) (1974) 793–819. · Zbl 0303.90039 · doi:10.1287/mnsc.20.5.783
[11] F. Glover and D. Klingman, ”Improved labeling of L.P. bases in networks”, Research Report CS 218, Center for Cybernetic Studies, University of Texas, Austin, TX (1974).
[12] F. Glover, D. Klingman and J. Stutz, ”Augmented threaded method”,Canadian Journal of Operational Research and Information Processing 12 (3) (1974) 293–298. · Zbl 0288.90077
[13] R.S. Hatch, ”Optimization strategies for large scale assignment and transportation type problems”, ORSA/TIMS conference, San Juan, Puerto Rico (1974).
[14] D. Klingman, A. Napier and J. Stutz, ”NETGEN-A program for generating large scale (un)capacitated assignment, transportation, and minimum cost flow network problems”,Management Science 20 (5) (1974) 814–822. · Zbl 0303.90042 · doi:10.1287/mnsc.20.5.814
[15] J. Mulvey, ”Column weighting factors and other enhancements to the augmented threaded index method for network optimization”, Joint ORSA/TIMS conference, San Juan, Puerto Rico (1974).
[16] V. Srinivasan and G.L. Thompson, ”Benefit-cost analysis of coding techniques for the primal transportation algorithm”,Journal of the Association of Computing Machines 20 (1973) 194–213. · Zbl 0257.68034
[17] V. Srinivasan and G.L. Thompson, ”Accelerated algorithms for labeling and relabeling of trees with application for distribution problems”,Journal of the Association of Computing Machines 19 (4) (1972) 712–726. · Zbl 0255.90071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.