zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Duality theory in multiobjective programming. (English) Zbl 0378.90100

90C99Mathematical programming
Full Text: DOI
[1] Kuhn, H. W., andTucker, A. W.,Nonlinear Programming, pp. 416-427, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, California, 1950.
[2] Da Cunha, N. O., andPolak, E.,Constrained Minimization under Vector-Valued Criteria in Finite Dimensional Spaces, Journal of Mathematical Analysis and Applications, Vol. 19, pp. 103-124, 1967. · Zbl 0154.44801 · doi:10.1016/0022-247X(67)90025-X
[3] Zadeh, L. A.,Optimality and Non-Scalar-Valued Performance Criteria, IEEE Transactions on Automatic Control, Vol. AC-8, pp. 59-60, 1967.
[4] Arrow, K. J., Hurwicz, L., andUzawa, H.,Studies in Linear and Nonlinear Programming, Stanford University Press, Stanford, California, 1958. · Zbl 0091.16002
[5] Yu, P. L.,Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives, Journal of Optimization Theory and Applications, Vol. 14, pp. 319-377, 1974. · Zbl 0268.90057 · doi:10.1007/BF00932614
[6] Luenberger, D. G.,Optimization by Vector Space Methods, John Wiley and Sons, New York, New York, 1969. · Zbl 0176.12701
[7] Geoffrion, A. M.,Proper Efficiency and the Theory of Vector Maximization, Journal of Mathematical Analysis and Applications, Vol. 22, pp. 618-630, 1968. · Zbl 0181.22806 · doi:10.1016/0022-247X(68)90201-1