×

Free Lie algebras as modules over their enveloping algebras. (English) Zbl 0379.17004


MSC:

17B99 Lie algebras and Lie superalgebras
17B35 Universal enveloping (super)algebras
17B65 Infinite-dimensional Lie (super)algebras
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Группы и алгебры Ли., Издат. ”Мир”, Мосцощ, 1976 (Руссиан). Алгебры Ли, свободные алгебры Ли и группы Ли. [Лие алгебрас, фрее Лие алгебрас анд Лие гроупс]; Едитед бы А. А. Кириллов анд А. И. Кострикин; Транслатед фром тхе Френч бы Ју. А. Бахтурин анд Г. И. Ол\(^{\приме}\)šанский; Ѐлементы Математики. [Елеменц оф Матхематицс].
[2] Marshall Hall Jr., A basis for free Lie rings and higher commutators in free groups, Proc. Amer. Math. Soc. 1 (1950), 575 – 581. · Zbl 0039.26302
[3] John P. Labute, Algèbres de Lie et pro-\?-groupes définis par une seule relation, Invent. Math. 4 (1967), 142 – 158 (French). · Zbl 0212.36303
[4] -, The lower central series of the group \( \langle x,y:{x^p} = 1\rangle \) (to appear). · Zbl 0393.20024
[5] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966. · Zbl 0138.25604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.