×

zbMATH — the first resource for mathematics

Perturbation des méthodes d’optimisation. Applications. (French) Zbl 0379.90088

MSC:
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] 1. J. P. BERTRAND, Optimisation stochastique dans un espace de Hilbert par la méthode du gradient, C.R. Acad. Sc. Paris, t. 276, série A, 1973, p. 613-616. Zbl0265.93042 MR322639 · Zbl 0265.93042
[2] 2. R. BOYER, Méthodes diagonales en optimisation convexe, Thèse, Université de Provence, septembre 1974. MR472030
[3] 3. J. W DANIEL, The Approximate Minimization of Functional, , Prentice Hall, 1971 MR272398 · Zbl 0223.65014
[4] 4. J. CEA, Optimisation. Théorie et Algorithmes, Dunod Paris, 1971. Zbl0211.17402 MR298892 · Zbl 0211.17402
[5] 5. P. HUARD, Cours d’optimisation, D.E.A., Université de Lille, 1972.
[6] 6. KLESSIG et POLAK, A Method of Feasible Directions Using Function Approximation with Application to Min-Max Problems J. Math. Anal. Appl., vol. 41, 1973, p. 583-602. Zbl0253.90046 MR349233 · Zbl 0253.90046 · doi:10.1016/0022-247X(73)90233-3
[7] 7. B. LEMAIRE, Thèse, Paris, 1970.
[8] 8. LEVITIN et POLYAK, Constrained Minimization Problem, U.S.S.R. Comp. Math.hys. Math., vol. 5, 1966, p. 1-50.
[9] 9. B. MARTINET, (a) Thèse, Grenoble, 1972; (b) Exposé fait au colloque d’analyse numérique de La Colle-sur-Loup, juin 1973.
[10] 10. E POLAK, Computational Methods in Optimization. A Unified Approach, Academic press, 1971.
[11] 11. R. T. ROCKAFELLAR, (a) The Multiplier Method of Hestenes and Powell Applied to Non Linear Programming, University of Washington, 1972; Zbl0254.90045 · Zbl 0254.90045 · doi:10.1007/BF00934777
[12] A Dual Approach to Solving Non Linear Programming Problems by Unconstrained Optimization (à paraître). Zbl0279.90035 · Zbl 0279.90035 · doi:10.1007/BF01580138
[13] 12. Y. SONNATG, Séminaire d’analyse numérique, Université de Provence, janvier 1974.
[14] 13. W. I. ZANGWILL, Non Linear Programming, A Unified Approach, Prentice Hall, International Series in Management, 1969. Zbl0195.20804 · Zbl 0195.20804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.