×

On the compactness of minimal spectrum. (English) Zbl 0381.13003


MSC:

13C05 Structure, classification theorems for modules and ideals in commutative rings
13A15 Ideals and multiplicative ideal theory in commutative rings
16N60 Prime and semiprime associative rings
16P60 Chain conditions on annihilators and summands: Goldie-type conditions
16U99 Conditions on elements
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] G. De Marco - A. Orsatti , Commutative rings in which every prime ideal is contained in a unique maximal ideal , Proc. Amer. Math. Soc. , 30 ( 1971 ), pp. 459 - 466 . MR 282962 | Zbl 0219.13003 · Zbl 0219.13003
[2] L. Gillman - M. Jerison , Rings of continuous functions , Van Nostrand , Princeton, N. J. ( 1960 ). MR 116199 | Zbl 0093.30001 · Zbl 0093.30001
[3] M. Henriksen - M. Jerison , The space of minimal prime ideals of a commutative ring , Trans. Amer. Math. Soc. , 115 ( 1965 ), pp. 110 - 130 . MR 194880 | Zbl 0147.29105 · Zbl 0147.29105
[4] J. Kist , Two characterizations of cmnmutative Baer rings , Pacific Journal of Math. , 50 ( 1974 ), pp. 125 - 134 . Article | MR 340233 | Zbl 0246.13005 · Zbl 0246.13005
[5] Y. Quentel , Sur la compacitĂ© du spectre minimal d’un anneau , Bull. Soc. math. France , 99 ( 1971 ), pp. 265 - 272 . Numdam | MR 289496 | Zbl 0215.36803 · Zbl 0215.36803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.