Sawyer, Eric T. Good/irreducible inner functions on a polydisc. (English) Zbl 0381.32007 Ann. Inst. Fourier 29, No. 2, 185-210 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 Documents MSC: 32A30 Other generalizations of function theory of one complex variable 30D40 Cluster sets, prime ends, boundary behavior 30D50 Blaschke products, etc. (MSC2000) 32A40 Boundary behavior of holomorphic functions of several complex variables Keywords:Blaschke product; factorization of inner functions; unit polydisc PDFBibTeX XMLCite \textit{E. T. Sawyer}, Ann. Inst. Fourier 29, No. 2, 185--210 (1979; Zbl 0381.32007) Full Text: DOI Numdam EuDML References: [1] [1], Singular sets of inner functions, Indiana Univ. Math. J., 21 (1971), 147-155. · Zbl 0235.32007 [2] [2], On two problems concerning linear transformations in Hilbert space, Acta. Math., 81 (1949), 239-255. · Zbl 0033.37701 [3] [3], , and , Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier, Grenoble, 20, 1 (1970), 37-76. · Zbl 0186.45302 [4] [4], Potentiel d’équilibre et capacité des ensembles..., Lunds Univ. Mat. Sem. d., (1935), 1-118. · JFM 61.1262.02 [5] [5], Introduction to Potential Theory, Wiley-Interscience, 1969. · Zbl 0188.17203 [6] [6], Composition operators, Can. J. Math., 20 (1968), 442-449. · Zbl 0161.34703 [7] [1] , Measurability of Functions in a Product Space, Proc. Amer. Math. Soc., 31 (1972), 485-488. · Zbl 0177.34101 [8] [8] and , Factorizations of bounded holomorphic functions, Duke Math. J., 39 (1972), 767-777. · Zbl 0265.32004 [9] [9] and , Boundary properties of functions of several complex variables, J. Math. Mech., 14 (1965), 991-1006. · Zbl 0147.11601 [10] [10], Subordinate Hp functions, Duke Math. J., 33 (1966), 347-354. · Zbl 0148.30205 [11] [11], Inner functions on polydiscs, Ph. D. thesis, McGill University (1977). [12] [12], Potential Theory in Modern Function Theory, Chelsea Publ. Co. · Zbl 0322.30001 [13] [13], Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. · Zbl 0085.05601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.