×

zbMATH — the first resource for mathematics

Off diagonal short time asymptotics for fundamental solutions of of diffusion equations. (English) Zbl 0381.35039

MSC:
35K05 Heat equation
35B40 Asymptotic behavior of solutions to PDEs
35A25 Other special methods applied to PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
53C20 Global Riemannian geometry, including pinching
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bishop R. L., Geometry of Manifolds (1964) · Zbl 0132.16003
[2] DOI: 10.1007/BFb0074189
[3] Buslaev V. S., Applications to diffraction, Topics in Mathematical Physics 2 pp 67– (1968)
[4] DOI: 10.1093/imamat/3.3.266 · Zbl 0149.31104
[5] Cohen J. K., J. Math. Anal.Appl. 38 pp 82–
[6] Colin de Verdiére Y., Seminaire Bourbaki,in Lecture Notes in Mathematics 431 pp 58– (1975)
[7] Courant R., Methods of Mathematical Physics (1962) · Zbl 0099.29504
[8] DOI: 10.1007/BF02392165 · Zbl 0232.47055
[9] Duistermaat J. J., Invent.Math. 29 pp 39– · Zbl 0307.35071
[10] Erdélyi A., Asymptotic Expansions (1956) · Zbl 0070.29002
[11] Hadamard J., Lectures on Cauchy’s problem in linear partial differential equations (1952) · Zbl 0049.34805
[12] DOI: 10.1007/BFb0070606
[13] DOI: 10.1007/BF02392052 · Zbl 0212.46601
[14] Kobayashi S., The Mathematical Association of America (Studies in Global Geometry and Analysis) 4 pp 96– (1967)
[15] DOI: 10.1002/cpa.3160130310 · Zbl 0098.29601
[16] Maslov V. P., Theorie des Perturbations et Méthodes Asymptotiques (French translation) (1972)
[17] DOI: 10.1070/RM1975v030n01ABEH001400 · Zbl 0315.53026
[18] DOI: 10.1512/iumj.1972.22.22022 · Zbl 0227.35064
[19] Watson G. N., Theory of Bessel Functions (1944) · Zbl 0063.08184
[20] DOI: 10.4153/CJM-1949-005-7
[21] DOI: 10.1002/cpa.3160200210
[22] DOI: 10.1002/cpa.3160200404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.