×

Formes différentielles et suites spectrales. (French) Zbl 0381.55008


MSC:

55T99 Spectral sequences in algebraic topology
55T10 Serre spectral sequences
18G30 Simplicial sets; simplicial objects in a category (MSC2010)
55T20 Eilenberg-Moore spectral sequences
58A99 General theory of differentiable manifolds
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] A.K. BOUSFIELD and V.K.A.M. GUGENHEIM, On PL de Rham theory and rational homotopy type, Memoirs of the AMS, Vol. 8, No 179. · Zbl 0338.55008
[2] A. DRESS, Zur spectralsequenz von faserungen, Inventiones Math., 3 (1967), 172-178. · Zbl 0147.23401
[3] S. EILENBERG and J.C. MOORE, Homology and fibrations, Comm. Math. Helv., 40 (1966), 199-236. · Zbl 0148.43203
[4] P. GABRIEL and M. ZISMAN, Calculus of fractions and homotopy theory, Springer-Verlag (1967). · Zbl 0186.56802
[5] R. GODEMENT, Théorie des faisceaux, Hermann (1964).
[6] P.P. GRIVEL, Suite spectrale et modèle minimal d’une fibration, Thèse Université de Genève (1977).
[7] A. HAEFLIGER, Sur la cohomologie de l’algèbre de Lie des champs de vecteurs, Ann. Scient. de l’ENS, 4e Série, t. 9 (1976), 503-532. · Zbl 0342.57014
[8] S. HALPERIN, Lectures on minimal models, Publications internes de l’UER de mathématiques pure et appliquées de Lille I, No 111 (1977).
[9] K. LAMOTKE, Semisimpliziale algebraische topologie, Springer-Verlag (1968). · Zbl 0188.28301
[10] S. MACLANE, Homology, Springer-Verlag (1975). · Zbl 0133.26502
[11] Séminaire Henri Cartan1954-1955.
[12] Séminaire sur LES formes différentielles sur LES ensembles simpliciaux. (Troisième Cycle romand de mathématiques) (1974-1975).
[13] J.P. SERRE, Homologie singulière des espaces fibrés, Annals of Math., 54 (1951), 425-505. · Zbl 0045.26003
[14] L. SMITH, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. of the AMS, vol. 129 (1967), 58-93. · Zbl 0177.51402
[15] N.E. STEENROD, Homology with local coefficients, Annals of Math., 44 (1945), 610-627. · Zbl 0061.40901
[16] D. SULLIVAN, Infinitesimal computation in topology, IHES Publications mathématiques, No 47 (1977), 269-331. · Zbl 0374.57002
[17] M. VIGUE-POIRRIER and D. SULLIVAN, The homology theory of the closed geodesic problem, J. Differential Geometry, 11 (1976), 633-644. · Zbl 0361.53058
[18] W. WEN-TSUN, Theory of I*-functor in algebraic topology, Scientia Sinica, Vol. XVIII, No 4 (1975), 464-482. · Zbl 0336.55019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.