×

Mixed finite element methods - reduced and selective integration techniques: a unification of concepts. (English) Zbl 0381.73075


MSC:

74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] de Veubeke, B. Fraeijs, Displacement and equilibrium models in the finite element method, (Zienkiewicz, O. C.; Holister, G. S., Stress analysis (1965), Wiley: Wiley London) · Zbl 0245.73031
[2] Herrmann, L. R., Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, AIAA J., 3, 1896-1900 (1965)
[3] Hughes, T. J.R.; Allik, H., Finite elements for compressible and incompressible continua, (Proc. Symp. Civil Eng. (1969), Vanderbilt Univ: Vanderbilt Univ Nashville, TN), 27-62
[4] Babuska, I.; Oden, J. T.; Lee, J. K., Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems, (TICOM Report 75-7 (1975), The Texas Institute of Computational Mechanics, Univ. Texas at Austin) · Zbl 0382.65056
[5] Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M., Reduced integration technique in general analysis of plates and shells, Int. J. Numer. Meths. Eng., 3, 275-290 (1971) · Zbl 0253.73048
[6] Naylor, D. J., Stresses in nearly incompressible materials by finite elements with application to the calculation of excess pore pressures, Int. J. Numer. Meths. Eng., 8, 443-460 (1974) · Zbl 0282.73048
[7] Zienkiewicz, O. C.; Godbole, P. N., Viscous incompressible flow with special reference to non-Newtonian (plastic) fluids, (Fin. Elem. Meths. in Fluids 1 (1975), Wiley: Wiley London) · Zbl 0271.73038
[8] Doherty, W. P.; Wilson, E. L.; Taylor, R. L., Stress analysis of axisymmetric solids utilizing higher order quadrilateral finite elements, (SESM Report No. 69-3 (1969), Dept. Civil Eng., Univ: Dept. Civil Eng., Univ California, Berkeley)
[9] Fried, I., Finite element analysis of incompressible material by residual energy balancing, Int. J. Solids Structs., 10, 993-1002 (1974) · Zbl 0281.73045
[10] Nagtegaal, J. C.; Parks, D. M.; Rice, J. R., On numerically accurate finite element solutions in the fully plastic range, Comp. Meths. Appl. Mech. Eng., 4, 153-178 (1974) · Zbl 0284.73048
[11] Argyris, J. H.; Dunne, P. C.; Angelopoulos, T.; Bichat, B., Large natural strains and some special difficulties due to nonlinearity and incompressibility in finite elements, Computer Meths. Appl. Mech. Eng., 4, 219-278 (1974) · Zbl 0284.73049
[12] Malkus, D. S., Finite element analysis of incompressible solids, (Ph. D. Thesis (1975), Boston Univ: Boston Univ Boston) · Zbl 0472.73088
[13] Malkus, D. S., A finite element displacement model valid for any value of the compressibility, Int. J. Solids Struct., 12, 731-738 (1976) · Zbl 0342.73054
[14] Malkus, D. S., Calculation of hole error by finite element methods, (Proceedings of the 8th International Conference on Rheology (1976)), 618-619
[15] Malkus, D. S.; Kearsley, E. A., Application of the finite element method to problems in Rheology (1976), (preprint)
[16] Hughes, T. J.R.; Taylor, R. L.; Sackman, J. L., Finite element formulation and solution of contact-impact problems in continuum mechanics-III, (SESM Report No. 75-7 (July 1975), Dep. Civil Eng. Univ. of California: Dep. Civil Eng. Univ. of California Berkeley)
[17] Hughes, T. J.R.; Taylor, R. L.; Sackman, J. L.; Kanoknukulchai, W., Finite element formulation and solution of contact-impact problems in continuum mechanics-IV, (SESM Report No. 76-4 (July 1976), Dep. Civil Eng., Univ. California: Dep. Civil Eng., Univ. California Berkeley)
[18] Hughes, T. J.R.; Taylor, R. L.; Levy, J. F., A finite element method for incompressible viscous flows, (Preprints of the Second International Symposium on Finite Element Methods in Flow Problems. Preprints of the Second International Symposium on Finite Element Methods in Flow Problems, S. Margherita Ligure, Italy (June 14-18, 1976)) · Zbl 0442.76027
[19] T.J.R. Hughes, R.L. Taylor and J.F. Levy, High Reynolds number steady, incompressible flows by a finite element method, Finite Elems. In Fluids 3 (Wiley, London, 197x) 000-000.; T.J.R. Hughes, R.L. Taylor and J.F. Levy, High Reynolds number steady, incompressible flows by a finite element method, Finite Elems. In Fluids 3 (Wiley, London, 197x) 000-000.
[20] Hughes, T. J.R.; Taylor, R. L.; Kanoknukulchai, W., A simple and efficient finite element for plate bending, Int. J. Numer. Meths. Eng., 11, 1529-1543 (1977) · Zbl 0363.73067
[21] Hughes, T. J.R., Equivalence of finite elements for nearly-incompressible elasticity, J. Appl. Mech., 44, 181-183 (1977)
[22] Argyris, J. H.; Dunne, P. C.; Johnsen, T. L.; Müller, M., Linear systems with a large number of sparse constraints with applications to incompressible materials, Comp. Meths. Appl. Mech. Eng., 10, 105-132 (1977) · Zbl 0364.73069
[23] R.S. Sandhu and K.J. Singh, Reduced integration for improved accuracy of finite element approximations, Comp. Meths. Appl. Mech. Eng. 00 (197x) 000-000.; R.S. Sandhu and K.J. Singh, Reduced integration for improved accuracy of finite element approximations, Comp. Meths. Appl. Mech. Eng. 00 (197x) 000-000.
[24] Oden, J. T.; Reddy, J. N., An introduction to the mathematical theory of finite elements (1976), Wiley: Wiley New York · Zbl 0336.35001
[25] Luenberger, D. G., Introduction ot linear and nonlinear programming (1973), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0241.90052
[26] Fichera, G., Existence theorems in elasticity, (Truesdell, C., Handbuch der Physik IVa/2 (1972), Springer: Springer Berlin) · Zbl 0317.73008
[27] Cook, R. D., Concepts and applications of finite element analysis (1974), Wiley: Wiley New York
[28] Oden, J. T., Finite elements of nonlinear continua (1972), McGraw-Hill: McGraw-Hill New York · Zbl 0235.73038
[29] Batchelor, G. K., An introduction of fluid mechanics (1970), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0193.25702
[30] Taylor, R. L.; Beresford, P. J.; Wilson, E. L., A. Non-Conforming Element for Stress Analysis, Int. J. Numer. Meth. Eng., 10, 1211-1219 (1976) · Zbl 0338.73041
[31] Pian, T. H.H., Hybrid models, (Fenves, S. J.; etal., Numerical and computer methods for solid continua (1973), Academic Press: Academic Press New York) · Zbl 0403.73047
[32] Gallagher, R. H., Finite element analysis fundamentals (1975), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.