×

zbMATH — the first resource for mathematics

Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. (English) Zbl 0381.76060

MSC:
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76N15 Gas dynamics (general theory)
35L65 Hyperbolic conservation laws
82B40 Kinetic theory of gases in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chapman, S., Cowling, T.: The mathematical theory of non-uniform gases, 3rd ed. London: Cambridge University Press 1970 · Zbl 0063.00782
[2] Ellis, R., Pinsky, M.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl.54, 125–156 (1975) · Zbl 0286.35062
[3] Ellis, R., Pinsky, M.: The projection of the Navier-Stokes equations upon the Euler equations. J. Math. Pures Appl.54, 157–181 (1975) · Zbl 0286.35063
[4] Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik, Vol. 12. Berlin-Göttingen-Heidelberg: Springer 1958
[5] Grad, H.: Asymptotic theory of the Boltzmann equation. Phys. Fluids6, 147–181 (1963) · Zbl 0115.45006
[6] Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied gas dynamics, Vol. 1 (ed. J. Laurmann), pp. 26–59. New York: Academic Press 1963
[7] Grad, H.: Asymptotic equivalence of the Navier-Stokes and non-linear Boltzmann equations. Proc. Symp. Appl. Math., Am. Math. Soc.17, 154–183 (1965) · Zbl 0144.48203
[8] Grad, H.: On Boltzmann’s H-theorem. J. Soc. Industr. Appl. Math.13, 259–277 (1965)
[9] Inoue, K., Nishida, T.: On the Broadwell model of the Boltzmann equation for a simple discrete velocity gas. Appl. Math. Optimiz. (Intern. J.)3, 24–49 (1977) · Zbl 0361.76081
[10] McLennan, J.: Convergence of the Chapman-Enskog expansion for the linearized Boltzmann equation. Phys. Fluids8, 1580–1584 (1965)
[11] Nalimov, V.: A priori estimates of solutions of elliptic equations in the class of analytic functions and their applications to the Cauchy-Poisson problem. Dokl. Akad. Nauk SSSR189 (1969); English translation: Sov. Math. Dokl.10, 1350–1354 (1969) · Zbl 0204.11802
[12] Nirenberg, L.: An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Diff. Geometry6, 561–576 (1972) · Zbl 0257.35001
[13] Nishida, T.: On the Nirenberg’s abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Diff. Geometry (to appear)
[14] Nishida, T., Imai, K.: Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ. Res. Inst. Math. Sci., Kyoto Univ.12, 229–239 (1976) · Zbl 0344.35003
[15] Ovsjannikov, L.: A nonlinear Cauchy problem in a scale of Banach spaces. Dokl. Akad. Nauk SSSR200 (1971); English translation: Sov. Math. Dokl.12, 1497–1502 (1971)
[16] Pinsky, M.: On the Navier-Stokes approximation to the linearized Boltzmann equation. J. Math. Pures Appl.55, 217–231 (1976) · Zbl 0296.35057
[17] Shizuta, Y.: The existence and approach to equilibrium of classical solutions of the Boltzmann equation. Commun. math. Phys. (to appear) · Zbl 0515.35002
[18] Ukai, S.: On the existence of global solutions of mixed problem for nonlinear Boltzmann equation. Proc. Japan Acad.50, 179–184 (1974) · Zbl 0312.35061
[19] Ukai, S.: Les solutions globales de l’équation nonlinéaire de Boltzmann dans l’espace tout entier et dans le demi-espace. Compte Rendu Acad. Sci. Paris282, 317–320 (1976) · Zbl 0345.45012
[20] Ukai, S., Nishida, T.: On the Boltzmann equation (Proc. Coll. Franco-Japan
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.