zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global solutions of the Boltzmann equation in a bounded convex domain. (English) Zbl 0382.35047

35Q99PDE of mathematical physics and other areas
35Q30Stokes and Navier-Stokes equations
35B99Qualitative properties of solutions of PDE
82B40Kinetic theory of gases (equilibrium statistical mechanics)
82B05Classical equilibrium statistical mechanics (general)
76S05Flows in porous media; filtration; seepage
Full Text: DOI
[1] H. Grad: Asymptotic theory of the Boltzmann equation. II. Rarefied Gas Dynamics, 1 (J. A. Laurmann, Ed.), Academic Press, New York (1963). · Zbl 0115.45006 · doi:10.1063/1.1706716
[2] H. Grad: Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equation. Proceedings of Symposia in Applied Mathematics, 17, Amer. Math. Soc, Providence (1965). · Zbl 0144.48203
[3] J. P. Guiraud: An H theorem for a gas of rigid spheres in a bounded domain. Theories Cinetiques Classiques et Relativistes, C. N. R. S., Paris (1975). · Zbl 0364.76067
[4] Y. Shizuta: On the classical solutions of the Boltzmann equation (to appear in Comm. Pure Appl. Math.). · Zbl 0515.35002 · doi:10.1002/cpa.3160360602
[5] Y. Shizuta: The existence and approach to equilibrium of classical solutions of the Boltzmann equation (to appear in Comm. Math. Phys.).