×

zbMATH — the first resource for mathematics

Nearby linear Chebyshev approximation. (English) Zbl 0382.41015

MSC:
41A50 Best approximation, Chebyshev systems
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Cheney, E. W.,Introduction to approximation theory. McGraw-Hill, 1966. · Zbl 0161.25202
[2] Dunham, C. B.,Best approximation of nearby functions by nearby linear families. Z. Angew. Math. Mech.52 (1972), 626. · Zbl 0249.41022 · doi:10.1002/zamm.19720521011
[3] Kripke, B. R.,Best approximation with respect to nearby norms. Numer. Math.6 (1964), 103–105. · Zbl 0128.34302 · doi:10.1007/BF01386060
[4] Maehly, H. andWitzgall, C.,Tschebyscheff-approximationen in kleinen intervallen. Numer. Math.2 (1960), 142–150. · Zbl 0131.29801 · doi:10.1007/BF01386218
[5] Dunham, C. B.,Uniqueness of best Chebyshev approximation to nearby functions. Period. Math. Hungar.5 (1974), 223–226. · Zbl 0294.41025 · doi:10.1007/BF02023203
[6] Dunham, C. B.,Uniqueness of best Chebyshev approximation on subsets. J. Approximation Theory14 (1975), 148–151. · Zbl 0303.41022 · doi:10.1016/0021-9045(75)90085-4
[7] Lawson, C.,Contribution, to the theory of linear least maximum approximation. Dissertation, University California, Los Angeles, 1961.
[8] Rice, J. R.,The approximation of functions. Volume 1, Addison-Wesley, Reading, Mass., 1964. · Zbl 0114.27001
[9] Bartelt, M. W.,Strongly unique best approximates to a function on a set, and a finite subset thereof. Pacific J. Math.53 (1974), 1–9. · Zbl 0264.41014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.