×

Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. II: Motion of a system of particles. (English) Zbl 0382.65031


MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] For a survey of pertinent topics, see: Hirschfelder, J. O., Curtiss, C. F., Bird, R. B.: Molecular Theory of Gases and Liquids, Wiley, N. Y., 1965; · Zbl 0057.23402
[2] Tolman, R. C.: The Principles of Statistical Mechanics, Oxford: Oxford University Press 1938 · Zbl 0019.35902
[3] For reviews, see: Bunker, D. L.: Classical Trajectory Methods. Methods of Computational Physics, vol. 10, p. 287, N. Y.: Academic Press 1971;
[4] LaBudde, R. A.: Classical Mechanics of Molecular Collisions University of Wisconsin Theoretical Chemistry Institute Report WIS-TC1-414 (1973)
[5] See, e. g.: Roy, A. E.: Foundations of Astrodynamics, N. Y.: MacMillan, 1965;
[6] Chebotarev, G. A.: Analytical and Numerical, Methods of Celestial Mechanics. N. Y.: American Elsevier Publishing Co., 1967 · Zbl 0166.42705
[7] See, e. g., the review by: Duncombe, R. L., Seidelmann, P. K., Klepczynski, W. J.: Dynamical Astronomy of the Solar System. Ann. Rev. of Astron. and Astrophys.11, 135 (1973) · doi:10.1146/annurev.aa.11.090173.001031
[8] LaBudde, R. A., Greenspan, D.: Discrete Mechanics ? A General Treatment: J. Computational Physics15, 134 (1974). · Zbl 0301.70006 · doi:10.1016/0021-9991(74)90081-3
[9] LaBudde, R. A., Greenspan, D.: Discrete Mechanics ? A General Treatment: University of Wisconsin, Computer Sciences Department Report WIS-CS-192 (1973) · Zbl 0301.70006
[10] LaBudde, R. A., Greenspan, D.: Discrete Mechanics for Anisotropic Potentials. University of Wisconsin, Computer Sciences Department Report WIS-CS-203 (1974) · Zbl 0301.70006
[11] LaBudde, R. A., Greenspan, D.: Discrete Mechanics for Nonseparable Potentials with Application to the LEPS form. University of Wisconsin Computer Sciences Department Report WIS-CS-210 (1974) · Zbl 0301.70006
[12] LaBudde, R. A., Greenspan, D.: Energy and Angular Momentum Conserving Methods of Arbitrary Order for the Numerical Integration of Equations of Motion. I. Motion of a Single Particle. University of Wisconsin Computer Sciences Department Report WIS-CS-208 (1974) · Zbl 0364.65066
[13] LaBudde, R. A., Greenspan, D.: Energy and Momentum Conserving Methods of Arbitrary Order for the Numerical Integration of Equations of Motion. II. Motion of a System of Particles. University of Wisconsin Computer Sciences Department Report WIS-CS-215 (1974) · Zbl 0382.65031
[14] See, e. g.: Nordsieck, A.: Numerical Solution of Ordinary Differential Equations. Math. Comp.16, 22 (1962); · Zbl 0105.31902 · doi:10.1090/S0025-5718-1962-0136519-5
[15] Gear, C. W.: Numerical, Initial Value Problems in Ordinary Differential Equations, Sect. 9.2.5. Englewood Cliffs, N. J.: Prentice-Hall, 1971; · Zbl 1145.65316
[16] LaBudde, R. A.: Extension of Nordsieck’s Methods to the Numerical Solution of Higher-Order Ordinary Differential Equations. University of Wisconsin Theoretical Chemistry Institute Report WIS-TC1-443 (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.