A Clough-Tocher type element useful for fourth order problems over nonpolygonal domains. (English) Zbl 0382.65060


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J40 Boundary value problems for higher-order elliptic equations
Full Text: DOI


[1] Garrett Birkhoff, Tricubic polynomial interpolation, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 1162 – 1164. · Zbl 0242.41007
[2] Garrett Birkhoff and Lois Mansfield, Compatible triangular finite elements, J. Math. Anal. Appl. 47 (1974), 531 – 553. · Zbl 0284.35021
[3] P. G. Ciarlet, Sur l’élément de Clough et Tocher, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 19 – 27 (French, with loose English summary). · Zbl 0306.65070
[4] Philippe G. Ciarlet, Numerical analysis of the finite element method, Les Presses de l’Université de Montréal, Montreal, Que., 1976. Séminaire de Mathématiques Supérieures, No. 59 (Été 1975). · Zbl 0353.73067
[5] R. W. CLOUGH & J. L. TOCHER, ”Finite element stiffness matrices for analysis of plates in bending,” Conferences on Matrix Methods in Structural Mechanics, Wright-Patterson A. F. B., Ohio, 1965.
[6] Lois Mansfield, Approximation of the boundary in the finite element solution of fourth order problems, SIAM J. Numer. Anal. 15 (1978), no. 3, 568 – 579. · Zbl 0391.65047
[7] Miloš Zlámal, Curved elements in the finite element method. I, SIAM J. Numer. Anal. 10 (1973), 229 – 240. · Zbl 0285.65067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.