zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A perturbation method applied to the buckling of a compressed elastica. (English) Zbl 0382.73032

MSC:
74G60Bifurcation and buckling
47J05Equations involving nonlinear operators (general)
47H99Nonlinear operators
WorldCat.org
Full Text: DOI
References:
[1] Berkey, D.; Freedman, M.: A perturbation problem from control exhibiting on and off the boundary behavior. SIAM J. On control 14, 857-876 (1976) · Zbl 0332.49008
[2] Freedman, M.; Granoff, B.: The formal asymptotic solution of a singularly perturbed nonlinear optimal control problem. J. optimization theory appl. 19, 301-325 (1976) · Zbl 0307.49011
[3] FREEDMAN, M. and KAPLAN, J.; ”Perturbation analysis of an optimal control problem involving bang-bang controls”, J. Differential Equations (to appear).
[4] Keller, J. B.; Antman, S.: Bifurcation theory and nonlinear eigenvalue problems. (1969) · Zbl 0181.00105
[5] Reiss, E. L.: Bifurcation theory and nonlinear eigenvalue problems. (1969) · Zbl 0185.53002
[6] Reiss, E. L.; Matkowsky, N. J.: Nonlinear dynamic buckling of a compressed elastic column. Quarterly of applied math., 245-260 (1971) · Zbl 0224.73064
[7] Stakgold, J.: Boundary value problems of mathematical physics. (1967) · Zbl 0158.04801