×

zbMATH — the first resource for mathematics

Gradient bounds and Liouville theorems for quasilinear elliptic equations. (English) Zbl 0383.35025

MSC:
35J60 Nonlinear elliptic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35J70 Degenerate elliptic equations
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] E. Bohn - L.K. Jackson , The Liouville theorem for a quasilinear elliptic partial differential equation , Trans. Amer. Math. Soc. , 104 ( 1962 ), pp. 392 - 397 . MR 139840 | Zbl 0119.30704 · Zbl 0119.30704
[2] R. Finn , Remarks relevant to minimal surfaces of constant mean curvature , J. d’Analyse Math. , 14 ( 1965 ), pp. 139 - 160 . MR 188909 | Zbl 0163.34604 · Zbl 0163.34604
[3] D. Gilbarg - J.B. Serrin , On isolated singularities of solutions of second order elliptic differential equations , J. d’Analyse Math. , 4 ( 1954 - 1956 ), pp. 165 - 174 . Zbl 0095.20804 · Zbl 0095.20804
[4] A.V. Ivanov , Local estimates for the first derivatives of solutions of quasilinear elliptic equations and their applications to Liouville-type theorems , Sem. Steklov Inst. Leningrad , 30 ( 1972 ), pp. 40 - 50 (translation in J. Sov. Math. , 1 ( 1973 ), pp. 416 - 430 (. MR 333429
[5] M.H. Protter - H.F. Weinberger , Maximum principles in differential equations , Prentice-Hall , Englewood Cliffs, N. J. , 1967 . MR 219861 | Zbl 0153.13602 · Zbl 0153.13602
[6] R.M. Redheffer , On the inequality \Delta u \succcurleq f(u, |grad u|) , J. Math. Anal. Appl. , 1 ( 1960 ), pp. 277 - 299 . Zbl 0116.07502 · Zbl 0116.07502
[7] J. Serrin , Gradient estimates for nonlinear elliptic and parabolic partial differential equations , Symposium on Nonlinear Functional Analysis, University of Wisconsin Press ( 1972 ). Zbl 0271.35004 · Zbl 0271.35004
[8] J. Serrin , Entire solutions of nonlinear Poisson equations , Proc. London Math. Soc. , 24 ( 1972 ), pp. 348 - 366 . MR 289961 | Zbl 0229.35035 · Zbl 0229.35035
[9] J. Serrin , Liouville theorems for quasilinear elliptic equations , Atti del Convegno Internazionale sui Metodi Valutativi nella Fisica-Matematica, Roma , Accademia Lincei , 1975 .
[10] I.N. Tavgelidze , Liouville theorems for second order elliptic and parabolic equations , Vestnik Moskov Univ. , 31 ( 1976 ), pp. 28 - 35 . MR 430492 | Zbl 0341.35032 · Zbl 0341.35032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.