×

The Euler characteristic of vector fields on Banach manifolds and a globalization of Leray-Schauder degree. (English) Zbl 0383.58001


MSC:

58B15 Fredholm structures on infinite-dimensional manifolds
55M25 Degree, winding number
58J20 Index theory and related fixed-point theorems on manifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abraham, R.; Robin, J., Transversal Mappings and Flows (1967), Benjamin: Benjamin New York · Zbl 0171.44404
[2] Eliasson, H., Geometry of manifolds of maps, J. Differential Geometry, 1, 169-174 (1967) · Zbl 0163.43901
[3] Elworthy, K. D.; Tromba, A. J., Differential structures and Fredholm maps on Banach manifolds, (Amer. Math. Soc. Proc. Global Analysis. Amer. Math. Soc. Proc. Global Analysis, Berkeley (1968)) · Zbl 0206.52504
[4] Elworthy, K. D.; Tromba, A. J., Degree theory on Banach manifolds, (Proc. Symp. Non-linear Functional Analysis. Proc. Symp. Non-linear Functional Analysis, Chicago (1967)) · Zbl 0234.58002
[5] Kuiper, N., The homotopy type of the unitary group of Hilbert space, Topology, 3, 19-30 (1965) · Zbl 0129.38901
[6] Michael, E., Continuous selections I, Ann. of Math., 63, 361-381 (1956) · Zbl 0071.15902
[7] Milnor, J., Topology from the Differentiable Viewpoint (1965), Univ. of Virginia Press · Zbl 0136.20402
[8] Palais, R., (Seminar on the Atiyah-Singer Index Theorem. Seminar on the Atiyah-Singer Index Theorem, Princeton, N.J. (1964)) · Zbl 0202.23103
[9] Palais, R., Morse theory on Hilbert manifolds, Topology, 2, 299-340 (1963) · Zbl 0122.10702
[10] Palais, R., On the homotopy type of certain groups of operators, Topology, 3, 271-279 (1965) · Zbl 0161.34501
[11] Palais, R., Lusternik-Schnirelman theory on Banach manifolds, Topology, 5, 115-132 (1966) · Zbl 0143.35203
[12] Smale, S., An infinite dimensional version of Sard’s theorem, Amer. J. Math., 87, 861-866 (1965) · Zbl 0143.35301
[13] Taylor, A., Introduction to Functional Analysis (1958), Wiley: Wiley New York · Zbl 0081.10202
[14] Tromba, A. J., Euler-Poincaré index theory, Ann. Scuola Normale Sup. Pisa, Vol. II, No. 1 (1975), Serie IV · Zbl 0315.58006
[15] Tromba, A. J., A general approach to Morse theory, J. Differential Geometry, 12, 47-85 (1977) · Zbl 0344.58012
[16] A. J. Tromba; A. J. Tromba · Zbl 0341.58005
[17] A. J. Tromba; A. J. Tromba
[18] A. J. TrombaAmer. J. Math.99,; A. J. TrombaAmer. J. Math.99, · Zbl 0373.58003
[19] Penot, J. P., Une méthode pour construire des variétés d’applications au moyen d’un plongement, C. R. Acad. Sci. Paris, 266, 625-627 (1968) · Zbl 0198.56702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.