×

zbMATH — the first resource for mathematics

The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features. (English) Zbl 0383.92001

MSC:
92-04 Software, source code, etc. for problems pertaining to biology
62H25 Factor analysis and principal components; correspondence analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cliff, N. Orthogonal rotation to congruence.Psychometrika, 1966,31, 33–42.
[2] Hotelling, H. Analysis of a complex of statistical variables into principal components.Journal of Educational Psychology, 1933,24, 417–441. · JFM 59.1182.04
[3] Kruskal, J. B., & Shepard, R. N. A nonmetric variety of linear factor analysis.Psychometrika, 1974,39, 123–157. · Zbl 0295.62064
[4] de Leeuw, J., Young, F. W., & Takane, Y. Additive structure in qualitative data: An alternating least squares method with optimal scaling features.Psychometrika, 1976,41, 471–503. · Zbl 0351.92031
[5] Roskam, E. E.Metric analysis of ordinal data in psychology. Voorschoten, Holland: VAM Publishing Co. 1968.
[6] Takane, Y., Young, F. W., & de Leeuw, J. Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.Psychometrika, 1977,42, 7–67. · Zbl 0354.92048
[7] Thurstone, L. L.Multiple factor analysis. Chicago: University of Chicago Press, 1947. · Zbl 0029.22203
[8] Young, F. W. A model of polynomial conjoint analysis algorithms. In R. N. Shepard, et al. (Eds.)Multidimensional scaling: Theory and applications in the behavioral sciences (Vol. 1). New York: Seminar Press, 1972.
[9] Young, F. W., de Leeuw, J., & Takane, Y. Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features.Psychometrika, 1976,41, 505–529. · Zbl 0351.92032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.