Jakubik, Jan Archimedean kernel of a lattice ordered group. (English) Zbl 0384.06021 Czech. Math. J. 28(103), 140-154 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 6 Documents MSC: 06F15 Ordered groups 06B23 Complete lattices, completions 06F20 Ordered abelian groups, Riesz groups, ordered linear spaces PDFBibTeX XMLCite \textit{J. Jakubik}, Czech. Math. J. 28(103), 140--154 (1978; Zbl 0384.06021) Full Text: DOI EuDML References: [1] G. Birkhoff: Lattice theory. 3rd edition, Providence 1967. · Zbl 0153.02501 [2] P. Conrad: Lattice ordered groups. Tulane University, 1970. · Zbl 0258.06011 [3] Л. Фукс: Частично упорядочгнныз алгебраические системы. Москва 1965. · Zbl 1099.01519 [4] Я. Якубик: Представления и расширения l-групп. Czech. Math. J. 13 (1963), 267-283. · Zbl 0288.60070 [5] J. Jakubík: Radical mappings and radical classes of lattice ordered groups. Symposia Mathem. 21 (1977), 451-477. [6] J. Martinez: Torsion theory for lattice ordered groups. Czech. Math. J. 25 (1975), 284-299. · Zbl 0321.06020 [7] Ф. Шик: К теории структурно упорядоченных групп. Czech. Math. J. 6 (1956), 1 - 25. · Zbl 0995.90522 · doi:10.1287/mnsc.3.1.45 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.