Harvey, J. M. \(T_0\)-separation in topological categories. (English) Zbl 0384.18002 Quaest. Math. 2, 177-190 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 6 Documents MSC: 18A99 General theory of categories and functors 18A20 Epimorphisms, monomorphisms, special classes of morphisms, null morphisms 54B30 Categorical methods in general topology 18B30 Categories of topological spaces and continuous mappings (MSC2010) 18D99 Categorical structures 54D10 Lower separation axioms (\(T_0\)–\(T_3\), etc.) 54E15 Uniform structures and generalizations PDF BibTeX XML Cite \textit{J. M. Harvey}, Quaest. Math. 2, 177--190 (1977; Zbl 0384.18002) Full Text: DOI OpenURL References: [1] Brummer G. C.L., ”A categorial study of initiality in uniform topology” (1971) [2] Brümmer G. C.L., Proc. S. Afr. Math. Soc. 4 pp 81– (1974) [3] Harvey J. M., ”Topological category extension and quasi-uniform topology” [4] DOI: 10.1016/0016-660X(74)90016-6 · Zbl 0288.54003 [5] Hoffmann R.-E., ”(E,M)-universally topological functors” (1974) [6] DOI: 10.1007/BFb0080865 [7] Hoffmann R.-E., Math. Nachr. [8] Salbany S. O., S. Afr. Math. Soc. Annual Report pp 91– (1969) [9] Salbany S. O., Math. Colloq. Univ. Cape Town 7 pp 33– (1971) [10] Skula L., Trans. Amer. Math. Soc. 142 pp 37– (1969) [11] DOI: 10.1007/BF01222531 · Zbl 0265.18008 [12] DOI: 10.1016/0016-660X(71)90106-1 · Zbl 0215.51502 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.