×

zbMATH — the first resource for mathematics

Non linear representations of Lie groups. (English) Zbl 0384.22005

MSC:
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] N. BOURBAKI , Variétés différentielles et analytiques (Fascicule de Résultats, Hermann, Paris, 1967 ). Zbl 0171.22004 · Zbl 0171.22004
[2] C. CHEVALLEY , Theory of Lie groups I (Princeton University Press, Princeton, 1946 ). Zbl 0063.00842 · Zbl 0063.00842
[3] L. GARDING , Vecteurs analytiques dans les représentations de groupes de Lie (Bull. Soc. Math. France, t. 88, 1960 , p. 73-93). Numdam | MR 22 #9870 | Zbl 0095.10402 · Zbl 0095.10402 · numdam:BSMF_1960__88__73_0 · eudml:86994
[4] V. GUILLEMIN and S. STERNBERG , Remarks on a Paper of Hermann (Trans. Amer. Math. Soc., 130, 1968 , p. 110-116). MR 36 #317 | Zbl 0155.05701 · Zbl 0155.05701 · doi:10.2307/1994774
[5] G. PINCZON and J. SIMON , Extensions of Representations and Cohomology (Rep. on Math. Phys. Tobe published). Zbl 0445.22013 · Zbl 0445.22013 · doi:10.1016/0034-4877(79)90039-9
[6] N. S. POULSEN , On C\infty -vectors and Intertwining Bilinear forms for Representations of Lie groups (Journ. Func. Anal., t. 9, 1972 , p. 87-128). MR 46 #9239 | Zbl 0237.22013 · Zbl 0237.22013 · doi:10.1016/0022-1236(72)90016-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.