×

zbMATH — the first resource for mathematics

Topological dynamics. (English) Zbl 0384.28018

MSC:
28D99 Measure-theoretic ergodic theory
54H20 Topological dynamics (MSC2010)
11K06 General theory of distribution modulo \(1\)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Roy L. Adler, \?-expansions revisited, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Nedlund), Springer, Berlin, 1973, pp. 1 – 5. Lecture Notes in Math., Vol. 318.
[2] Hirotada Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83 – 99. · Zbl 0043.11203
[3] V. I. Arnol\(^{\prime}\)d, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 91 – 192 (Russian).
[4] Joseph Auslander, Endomorphisms of minimal sets, Duke Math. J. 30 (1963), 605 – 614. · Zbl 0116.14502
[5] Joseph Auslander, On the proximal relation in topological dynamics, Proc. Amer. Math. Soc. 11 (1960), 890 – 895. · Zbl 0096.37303
[6] Joseph Auslander, Regular minimal sets. I, Trans. Amer. Math. Soc. 123 (1966), 469 – 479. · Zbl 0139.40901
[7] J. Auslander and S. Glasner, Distal and highly proximal extensions of minimal flows, Indiana Univ. Math. J. 26 (1977), no. 4, 731 – 749. · Zbl 0383.54026 · doi:10.1512/iumj.1977.26.26057 · doi.org
[8] Jozeph Auslander and Frank Hahn, Point transitive flows, algebras of functions and the Bebutov system, Fund. Math. 60 (1967), 117 – 137. · Zbl 0166.18901
[9] L. Auslander, L. Green and F. Hahan, Flows on homogeneous spaces, Ann. of Math. Studies, no. 53, Princeton Univ. Press, Princeton, N.J., 1963. MR 29 #4841.
[10] Leonora Benzinger, Uniformly distributed sequences in locally compact groups. I, II, Trans. Amer. Math. Soc. 188 (1974), 149 – 165; ibid. 188 (1974), 167-178. · Zbl 0281.22004
[11] I. D. Berg, M. Rajagopalan, and L. A. Rubel, Uniform distribution in locally compact Abelian groups, Trans. Amer. Math. Soc. 133 (1968), 435 – 446. · Zbl 0165.34401
[12] G. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R.I., 1927. · JFM 53.0732.01
[13] J. R. Blum and D. L. Hanson, On invariant probability measures. I, II, Pacific J. Math. 10 (1960), 1125-1129 11 (1961), 63 – 71. S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 2039 – 2043. Harald Bohr, Zur Theorie der fastperiodischen Funktionen, Acta Math. 47 (1926), no. 3, 237 – 281 (German). III. Dirichletentwicklung analytischer Funktionen. · JFM 52.0330.04 · doi:10.1007/BF02543846 · doi.org
[14] E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271. · JFM 40.0283.01
[15] N. Bourbaki, Éléments de mathématique, Fasc. 29, Livre VI: Intégration, Chap. 7, Actualitiés Sci.Indust., no. 1306, Hermann, Paris, 1963. MR 31 #3539. · Zbl 0156.03204
[16] N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale, Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1045, Hermann, Paris, 1958 (French). · Zbl 0085.37103
[17] Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. Rufus Bowen, Periodic points and measures for Axiom \? diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377 – 397. , https://doi.org/10.1090/S0002-9947-1971-0282372-0 Rufus Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1 – 30. · Zbl 0254.58005 · doi:10.2307/2373590 · doi.org
[18] I. U. Bronšteĭn, A theorem on the structure of almost distal expansions of minimal sets., Mat. Issled. 6 (1971), no. vyp. 2 (20), 22 – 32, 157 (Russian).
[19] D. C. Champernowne, The construction of decimals normal in the scale of 10, J. London Math. Soc. 8 (1933), 254-260. · Zbl 0007.33701
[20] Jesse Paul Clay, Proximity relations in transformation groups, Trans. Amer. Math. Soc. 108 (1963), 88 – 96. · Zbl 0115.40301
[21] C. M. Colebrook, The Hausdorff dimension of certain sets of nonnormal numbers, Michigan Math. J. 17 (1970), 103 – 116. · Zbl 0194.35802
[22] J. P. Conze et M. Keane, Ergodicité d’un flot cylindrique, C. R. Acad. Sci. Paris (to appear).
[23] Arthur H. Copeland and Paul Erdös, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857 – 860. · Zbl 0063.00962
[24] H. Davenport and P. Erdös, Note on normal decimals, Canadian J. Math. 4 (1952), 58 – 63. · Zbl 0046.04902
[25] K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63 – 97. · Zbl 0104.05501 · doi:10.1007/BF02559535 · doi.org
[26] Manfred Denker and Ernst Eberlein, Ergodic flows are strictly ergodic, Advances in Math. 13 (1974), 437 – 473. · Zbl 0283.28012 · doi:10.1016/0001-8708(74)90075-9 · doi.org
[27] W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217 – 240. · Zbl 0034.06404
[28] Beno Eckmann, Über monothetische Gruppen, Comment. Math. Helv. 16 (1944), 249 – 263 (German). · Zbl 0061.04402 · doi:10.1007/BF02568577 · doi.org
[29] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser. 20 (1949), 31 – 36. · Zbl 0031.20801
[30] Robert Ellis, A semigroup associated with a transformation group, Trans. Amer. Math. Soc. 94 (1960), 272 – 281. · Zbl 0094.17402
[31] Robert Ellis, Distal transformation groups, Pacific J. Math. 8 (1958), 401 – 405. · Zbl 0092.39702
[32] Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. · Zbl 0193.51502
[33] Robert Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119 – 125. · Zbl 0079.16602
[34] Robert Ellis, Point transitive transformation groups, Trans. Amer. Math. Soc. 101 (1961), 384 – 395. · Zbl 0104.17701
[35] Robert Ellis, The structure of group-like extensions of minimal sets, Trans. Amer. Math. Soc. 134 (1968), 261 – 287. · Zbl 0197.19601
[36] Robert Ellis, The Veech structure theorem, Trans. Amer. Math. Soc. 186 (1973), 203 – 218 (1974). · Zbl 0275.54030
[37] Robert Ellis, Universal minimal sets, Proc. Amer. Math. Soc. 11 (1960), 540 – 543. · Zbl 0102.38002
[38] Robert Ellis, Shmuel Glasner, and Leonard Shapiro, Proximal-isometric (\?\?) flows, Advances in Math. 17 (1975), no. 3, 213 – 260. · Zbl 0304.54039 · doi:10.1016/0001-8708(75)90093-6 · doi.org
[39] Robert Ellis and W. H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc. 94 (1960), 258 – 271. · Zbl 0094.17401
[40] Robert Ellis and Harvey Keynes, A characterization of the equicontinuous structure relation, Trans. Amer. Math. Soc. 161 (1971), 171 – 183. · Zbl 0233.54023
[41] Robert Ellis and Harvey B. Keynes, Bohr compactifications and a result of Følner, Israel J. Math. 12 (1972), 314 – 330. · Zbl 0242.22001 · doi:10.1007/BF02790758 · doi.org
[42] P. Erdős, Problems and results on diophantine approximations, Compositio Math. 16 (1964), 52 – 65 (1964). · Zbl 0131.04803
[43] E. Esclangon, Les fonctions quasi-periodiques, Thèse, Paris, 1904. · JFM 34.0464.02
[44] Harry Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335 – 386. · Zbl 0192.12704 · doi:10.2307/1970220 · doi.org
[45] Harry Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 193 – 229.
[46] Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1 – 49. · Zbl 0146.28502 · doi:10.1007/BF01692494 · doi.org
[47] H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83 (1961), 573 – 601. · Zbl 0178.38404 · doi:10.2307/2372899 · doi.org
[48] H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477 – 515. · Zbl 0199.27202 · doi:10.2307/2373137 · doi.org
[49] Harry Furstenberg, Harvey Keynes, and Leonard Shapiro, Prime flows in topological dynamics, Israel J. Math. 14 (1973), 26 – 38. · Zbl 0264.54030 · doi:10.1007/BF02761532 · doi.org
[50] S. Glasner, A metric minimal flow whose enveloping semigroup contains finitely many minimal ideals is Pg, Tel-Aviv Univ., 11 pp. (preprint). · Zbl 0319.54030
[51] Shmuel Glasner, Compressibility properties in topological dynamics, Amer. J. Math. 97 (1975), 148 – 171. · Zbl 0298.54023 · doi:10.2307/2373665 · doi.org
[52] Shmuel Glasner, Proximal flows, Lecture Notes in Mathematics, Vol. 517, Springer-Verlag, Berlin-New York, 1976. · Zbl 0322.54017
[53] Shmuel Glasner, Relatively invariant measures, Pacific J. Math. 58 (1975), no. 2, 393 – 410. · Zbl 0313.54048
[54] Shmuel Glasner, Topological dynamics and group theory, Trans. Amer. Math. Soc. 187 (1974), 327 – 334. · Zbl 0251.54023
[55] Roger Godement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc. 63 (1948), 1 – 84 (French). · Zbl 0031.35903
[56] Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological dynamics, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R. I., 1955.
[57] Paul R. Halmos, Lectures on ergodic theory, Chelsea Publishing Co., New York, 1960. · Zbl 0096.09004
[58] S. Hartman, Remarks on equidistribution on non-compact groups, Compositio Math. 16 (1964), 66 – 71 (1964). · Zbl 0142.26603
[59] F. Hausdorff, Mengenlehre, 3rd ed., de Gruyter, Berlin, 1935. · JFM 61.0060.02
[60] E. Hecke, Analytische Funktionen und die Verteilung von Zahlen mod. Eins, Abh. Math. Sem. Univ. Hamburg 1 (1922), 54-76. · JFM 48.0197.03
[61] Gustav A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), no. 3, 530 – 542. · Zbl 0015.10201 · doi:10.1215/S0012-7094-36-00246-6 · doi.org
[62] Edmund Hlawka, Ein metrisches Gegenstück zu einem Satz von W. A. Veech, Monatsh. Math. 76 (1972), 436 – 447 (German). , https://doi.org/10.1007/BF01297307 Edmund Hlawka, Zur formalen Theorie der Gleichverteilung in kompakten Gruppen, Rend. Circ. Mat. Palermo (2) 4 (1955), 33 – 47 (German). · Zbl 0065.26402 · doi:10.1007/BF02846027 · doi.org
[63] Konrad Jacobs, Lipschitz functions and the prevalence of strict ergodicity for continuous-time flows, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Springer, Berlin, 1970, pp. 87 – 124. · Zbl 0201.38302
[64] Robert I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech. 19 (1969/1970), 717 – 729. · Zbl 0192.40601
[65] Shizuo Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635 – 641. · Zbl 0060.27406
[66] Teturo Kamae, Subsequences of normal sequences, Israel J. Math. 16 (1973), 121 – 149. · Zbl 0272.28012 · doi:10.1007/BF02757864 · doi.org
[67] Teturo Kamae and Benjamin Weiss, Normal numbers and selection rules, Israel J. Math. 21 (1975), no. 2-3, 101 – 110. Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 1974). · Zbl 0327.28014 · doi:10.1007/BF02760789 · doi.org
[68] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 81 – 106 (Russian). · Zbl 0172.07202
[69] M. Keane, Irrational rotations and quasi-ergodic measures, Publications des Séminaires de Mathématiques (Univ. Rennes, Rennes, année 1970 – 1971), Fasc. 1: Probabilités, Dép. Math. et Informat., Univ. Rennes, Rennes, 1970, pp. 17 – 26.
[70] Michael Keane, Interval exchange transformations, Math. Z. 141 (1975), 25 – 31. · Zbl 0278.28010 · doi:10.1007/BF01236981 · doi.org
[71] Michael Keane, Non-ergodic interval exchange transformations, Israel J. Math. 26 (1977), no. 2, 188 – 196. · Zbl 0351.28012 · doi:10.1007/BF03007668 · doi.org
[72] Michael Keane, Strongly mixing \?-measures, Invent. Math. 16 (1972), 309 – 324. · Zbl 0241.28014 · doi:10.1007/BF01425715 · doi.org
[73] M. Keane, Polygonal geodesic flows, Preprint.
[74] Harry Kesten, On a conjecture of Erdős and Szüsz related to uniform distribution \?\?\?1, Acta Arith. 12 (1966/1967), 193 – 212. · Zbl 0144.28902
[75] H. B. Keynes and D. Newton, Minimal (\?,\?)-extensions, Pacific J. Math. 77 (1978), no. 1, 145 – 163. · Zbl 0362.28010
[76] H. B. Keynes and D. Newton, Real prime flows, Trans. Amer. Math. Soc. 217 (1976), 237 – 255. · Zbl 0341.54051
[77] Harvey B. Keynes and James B. Robertson, Eigenvalue theorems in topological transformation groups, Trans. Amer. Math. Soc. 139 (1969), 359 – 369. · Zbl 0176.20602
[78] A. Ya. Khinchin, Continued fractions, The University of Chicago Press, Chicago, Ill.-London, 1964. · Zbl 0117.28601
[79] A. W. Knapp, Decomposition theorem for bounded uniformly continuous functions on a group, Amer. J. Math. 88 (1966), 902 – 914. · Zbl 0156.14501 · doi:10.2307/2373087 · doi.org
[80] A. W. Knapp, Distal functions on groups, Trans. Amer. Math. Soc. 128 (1967), 1 – 40. · Zbl 0154.33702
[81] A. W. Knapp, Functions behaving like almost automorphic functions, Topological Dynamics (Symposium, Colorado State Univ., Ft. Collins, Colo., 1967) Benjamin, New York, 1968, pp. 299 – 317. · Zbl 0215.24102
[82] W. Krieger, On generators in ergodic theory, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 303 – 308. · Zbl 0334.28019
[83] Wolfgang Krieger, On unique ergodicity, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 327 – 346.
[84] Nicolas Kryloff and Nicolas Bogoliouboff, La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math. (2) 38 (1937), no. 1, 65 – 113 (French). · Zbl 0016.08604 · doi:10.2307/1968511 · doi.org
[85] Douglas McMahon, On the role of an abelian phase group in relativized problems in topological dynamics, Pacific J. Math. 64 (1976), no. 2, 493 – 504. · Zbl 0331.54035
[86] Douglas McMahon, Weak mixing and a note on a structure theorem for minimal transformation groups, Illinois J. Math. 20 (1976), no. 2, 186 – 197. · Zbl 0316.54037
[87] D. McMahon and T. S. Wu, Equicontinuous structure relations of minimal transformation groups, Case-Western Reserve, 31 pp. (preprint). · Zbl 0444.54032
[88] D. McMahon and T. S. Wu, On proximal and distal extensions of minmal sets, Bull. Inst. Math. Acad. Sinica 2 (1974), no. 1, 93 – 107. · Zbl 0286.54030
[89] D. McMahon and T. S. Wu, Relative equicontinuity and its variations, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972) Springer, Berlin, 1973, pp. 201 – 205. Lecture Notes in Math., Vol. 318. · Zbl 0257.54040
[90] D. McMahon and T. S. Wu, On weak mixing and local almost periodicity, Duke Math. J. 39 (1972), 333 – 343. · Zbl 0238.54041
[91] Michel Mendès France, Les ensembles de Bésineau, Séminaire Delange-Pisot-Poitou (15e année: 1973/74), Théorie des nombres, Fasc. 1, Exp. No. 7, Secrétariat Mathématique, Paris, 1975, pp. 6 (French). · Zbl 0324.10049
[92] Richard von Mises, Wahrscheinlichkeit, Statistik und Wahrheit, Springer-Verlag, Vienna-New York, 1972 (German). Vierte Auflage, durchgesehen von Hilda Geiringer; Library of Exact Philosophy, Vol. 7. · Zbl 0242.60001
[93] I. Namioka, Right topological groups, distal flows, and a fixed-point theorem, Math. Systems Theory 6 (1972), 193 – 209. · Zbl 0239.22001 · doi:10.1007/BF01706088 · doi.org
[94] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515 – 531. · Zbl 0294.54010
[95] J. v. Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc. 36 (1934), no. 3, 445 – 492. · JFM 60.0357.01
[96] Ivan Niven, Uniform distribution of sequences of integers, Trans. Amer. Math. Soc. 98 (1961), 52 – 61. · Zbl 0096.03102
[97] A. Ostrowski, Notiz zur Theorie der Diophantischen Approximationen und zur Theorie der linearen Diophantischen Approximationen, Jber. Deutsch Math. Verein 36 (1927), 178-180; ibid 39 (1930), 34-46. · JFM 53.0165.02
[98] John C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116 – 136. · Zbl 0046.11504
[99] John C. Oxtoby, On two theorems of Parthasarathy and Kakutani concerning the shift transformation, Ergodic Theory (Proc. Internat. Sympos., Tulane Univ., New Orleans, La., 1961) Academic Press, New York, 1963, pp. 203 – 215.
[100] William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55 – 66. · Zbl 0127.35301
[101] K. R. Parthasarathy, On the category of ergodic measures, Illinois J. Math. 5 (1961), 648 – 656. · Zbl 0103.28101
[102] Reuven Peleg, Weak disjointness of transformation groups, Proc. Amer. Math. Soc. 33 (1972), 165 – 170. · Zbl 0237.54031
[103] K. E. Petersen, Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc. 24 (1970), 278 – 280. · Zbl 0188.55503
[104] Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1989. Corrected reprint of the 1983 original. · Zbl 0676.28008
[105] Karl Petersen, On a series of cosecants related to a problem in ergodic theory, Compositio Math. 26 (1973), 313 – 317. · Zbl 0269.10030
[106] Karl Petersen and Leonard Shapiro, Induced flows, Trans. Amer. Math. Soc. 177 (1973), 375 – 390. · Zbl 0229.54036
[107] Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. · Zbl 0135.36203
[108] Gérard Rauzy, Équirépartition et entropie, Répartition modulo 1 (Actes Colloq., Marseille-Luminy, 1974), Springer, Berlin, 1975, pp. 155 – 175. Lecture Notes in Math., Vol. 475 (French).
[109] Gérard Rauzy, Nombres normaux et processus déterministes, Journées Arithmétiques de Bordeaux (Conf., Univ Bordeaux, 1974), Soc. Math. France, Paris, 1975, pp. 263 – 265. Astérique, Nos. 24-25 (French). · Zbl 0305.10049
[110] Gérard Rauzy, Propriétés statistiques de suites arithmétiques, Presses Universitaires de France, Paris, 1976. Le Mathématicien, No. 15; Collection SUP. · Zbl 0337.10036
[111] G. Rauzy, Sur une suite liée a la discrepance de la suite \((n\alpha)_{n\in N}\), Univ. d’Aix-Marseille II, 5 pp. (preprint). · Zbl 0339.28011
[112] H. Rindler, Gleichverteilte Folgen in local Kompakten Gruppen (preprint). · Zbl 0361.43002
[113] Harald Rindler, Uniform distribution on locally compact groups, Proc. Amer. Math. Soc. 57 (1976), no. 1, 130 – 132. · Zbl 0306.22009
[114] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499 – 530 (Russian).
[115] L. A. Rubel, Uniform distribution in locally compact groups, Comment. Math. Helv. 39 (1965), 253 – 258. · Zbl 0152.03703 · doi:10.1007/BF02566952 · doi.org
[116] Czesław Ryll-Nardzewski, On fixed points of semigroups of endomorphisms of linear spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 55 – 61.
[117] R. Sacksteder, On the convergence to invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete (to appear). · Zbl 0304.58018
[118] Richard Sacksteder, The measures invariant under an expanding map, Géométrie différentielle (Colloq., Univ. Santiago de Compostela, Santiago de Compostela, 1972) Springer, Berlin, 1974, pp. 179 – 194. Lecture Notes in Math., Vol. 392.
[119] Klaus Schmidt, A cylinder flow arising from irregularity of distribution, Compositio Math. 36 (1978), no. 3, 225 – 232. · Zbl 0388.28019
[120] Mark Pollicott and Klaus Schmidt , Ergodic theory of \?^\? actions, London Mathematical Society Lecture Note Series, vol. 228, Cambridge University Press, Cambridge, 1996. · Zbl 0836.00035
[121] Klaus Schmidt, Infinite invariant measures on the circle, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 37 – 43.
[122] Wolfgang M. Schmidt, Irregularities of distribution, Quart. J. Math. Oxford Ser. (2) 19 (1968), 181 – 191. · Zbl 0155.37703 · doi:10.1093/qmath/19.1.181 · doi.org
[123] Wolfgang M. Schmidt, Irregularities of distribution. VI, Compositio Math. 24 (1972), 63 – 74. · Zbl 0226.10034
[124] Wolfgang M. Schmidt, Irregularities of distribution. VIII, Trans. Amer. Math. Soc. 198 (1974), 1 – 22. · Zbl 0278.10036
[125] Leonard Shapiro, Distal and proximal extensions of minimal flows, Math. Systems Theory 5 (1971), 76 – 88. · Zbl 0213.25602 · doi:10.1007/BF01691470 · doi.org
[126] Leonard Shapiro, On the structure of minimal flows, Global differentiable dynamics (Proc. Conf., Case Western Reserve Univ., Cleveland, Ohio, 1969) Springer, Berlin, 1971, pp. 123 – 128. Lecture Notes in Math., Vol. 235.
[127] Leonard Shapiro, Proximality in minimal transformation groups, Proc. Amer. Math. Soc. 26 (1970), 521 – 525. · Zbl 0202.23302
[128] L. Shapiro, Regularities of distribution, Univ. of Minnesota, 1975, 33 pp. (preprint).
[129] Leonard Shapiro, Regularities of distribution, Studies in probability and ergodic theory, Adv. in Math. Suppl. Stud., vol. 2, Academic Press, New York-London, 1978, pp. 135 – 154. · Zbl 0446.10045
[130] Karl Sigmund, Generic properties of invariant measures for Axiom \? diffeomorphisms, Invent. Math. 11 (1970), 99 – 109. · Zbl 0193.35502 · doi:10.1007/BF01404606 · doi.org
[131] Karl Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc. 190 (1974), 285 – 299. · Zbl 0286.28010
[132] Ya. G. Sinai, Introduction to ergodic theory, Princeton University Press, Princeton, N.J., 1976. Translated by V. Scheffer; Mathematical Notes, 18. · Zbl 0375.28011
[133] Haruo Totoki, Ergodic theory, Lecture Notes Series, No. 14, Matematisk Institut, Aarhus Universitet, Aarhus, 1969. · Zbl 0296.28020
[134] William A. Veech, \cal\?-almost automorphic functions, Problems in analysis (papers dedicated to Salomon Bochner, 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 345 – 351.
[135] William A. Veech, A fixed point theorem-free approach to weak almost periodicity, Trans. Amer. Math. Soc. 177 (1973), 353 – 362. · Zbl 0286.43009
[136] W. A. Veech, Almost automorphic functions on groups, Amer. J. Math. 87 (1965), 719 – 751. · Zbl 0137.05803 · doi:10.2307/2373071 · doi.org
[137] W. A. Veech, Almost automorphy and a theorem of Loomis, Arch. Math. (Basel) 18 (1967), 267 – 270. · Zbl 0155.40501 · doi:10.1007/BF01900632 · doi.org
[138] W. A. Veech, Applications of ergodic theory to some problems of uniform distribution, Proc. Conf. on Ergodic Theory and Topological Dynamics (Univ. of Kentucky, 1971), Math. Dept., Univ. of Kentucky, Lexington, Ky., pp. 26-33.
[139] William A. Veech, Complementation and continuity in spaces of almost automorphic functions, Math. Scand. 25 (1969), 109 – 112. · Zbl 0203.44201 · doi:10.7146/math.scand.a-10946 · doi.org
[140] William A. Veech, Finite group extensions of irrational rotations, Israel J. Math. 21 (1975), no. 2-3, 240 – 259. Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 1974). · Zbl 0334.28014 · doi:10.1007/BF02760801 · doi.org
[141] W. A. Veech, Generalizations of almost periodic functions, Unpublished notes, 58 pp. · Zbl 0173.33402
[142] William A. Veech, Minimal sets and Souslin sets, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Springer, Berlin, 1973, pp. 253 – 265. Lecture Notes in Math., Vol. 318.
[143] William A. Veech, On a theorem of Bochner, Ann. of Math. (2) 86 (1967), 117 – 137. · Zbl 0155.40502 · doi:10.2307/1970363 · doi.org
[144] William A. Veech, Point-distal flows, Amer. J. Math. 92 (1970), 205 – 242. · Zbl 0202.55503 · doi:10.2307/2373504 · doi.org
[145] William A. Veech, Properties of minimal functions on abelian groups, Amer. J. Math. 91 (1969), 415 – 440. · Zbl 0206.42804 · doi:10.2307/2373517 · doi.org
[146] William A. Veech, Some questions of uniform distribution, Ann. of Math. (2) 94 (1971), 125 – 138. · Zbl 0226.43001 · doi:10.2307/1970738 · doi.org
[147] William A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem \?\?\?2, Trans. Amer. Math. Soc. 140 (1969), 1 – 33. · Zbl 0201.05601
[148] William A. Veech, The equicontinuous structure relation for minimal Abelian transformation groups, Amer. J. Math. 90 (1968), 723 – 732. · Zbl 0177.51204 · doi:10.2307/2373480 · doi.org
[149] William A. Veech, Well distributed sequences of integers, Trans. Amer. Math. Soc. 161 (1971), 63 – 70. · Zbl 0229.10019
[150] Michel Carvallo, Logique à trois valeurs. Logique à seuil, Préface de J. A. Ville. Collection de Mathématiques Économiques, Fasc. V, Gauthier-Villars Éditeur, Paris, 1968 (French). · Zbl 0175.26303
[151] Bodo Volkmann, Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert sind. VI, Math. Z. 68 (1958), 439 – 449 (German). · Zbl 0079.07903 · doi:10.1007/BF01160360 · doi.org
[152] Peter Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc. 236 (1978), 121 – 153. · Zbl 0375.28009
[153] Peter Walters, Ergodic theory — introductory lectures, Lecture Notes in Mathematics, Vol. 458, Springer-Verlag, Berlin-New York, 1975. · Zbl 0299.28012
[154] B. Weiss, Normal sequences as collectives, Proc. Conf. on Ergodic Theory and Topological Dynamics (Univ. of Kentucky, 1971), Math. Dept., Univ. of Kentucky, Lexington, Ky., pp. 79-80.
[155] Benjamin Weiss, Topological transitivity and ergodic measures, Math. Systems Theory 5 (1971), 71 – 75. · Zbl 0212.40103 · doi:10.1007/BF01691469 · doi.org
[156] Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313 – 352 (German). · JFM 46.0278.06 · doi:10.1007/BF01475864 · doi.org
[157] E. Szemerédi, On sets of integers containing no \? elements in arithmetic progression, Acta Arith. 27 (1975), 199 – 245. Collection of articles in memory of Juriĭ Vladimirovič Linnik. · Zbl 0303.10056
[158] Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204 – 256. · Zbl 0347.28016 · doi:10.1007/BF02813304 · doi.org
[159] Klaus Roth, Sur quelques ensembles d’entiers, C. R. Acad. Sci. Paris 234 (1952), 388 – 390 (French). · Zbl 0046.04302
[160] A. Y. Khinchin, Three pearls of number theory, Graylock Press, Rochester, N. Y., 1952. · Zbl 0048.27202
[161] R. L. Graham and B. L. Rothschild, A short proof of van der Waerden’s theorem on arithmetic progressions, Proc. Amer. Math. Soc. 42 (1974), 385 – 386. · Zbl 0278.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.