zbMATH — the first resource for mathematics

Processus de diffusion associe aux mesures de Gibbs sur \(\mathbb{R}^{\mathbb{Z}^d}\). (French) Zbl 0384.60076

60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI
[1] Bourbaki: Intégration; chapitre IX, § 5, exercice 10-c.
[2] Doss, H.: Quelques propriétés des processus de diffusion à valeur dans un espace de Hilbert; thèse de 3é cycle, Université de Paris 6. (1975)
[3] Bourbaki: Topologie générale, chapitre IX, § 6, n? 7.
[4] Cassandro, M., Olivieri, E., Pellegrinotti, A., Presutti, E.: Existence and uniqueness of D.L.R measures for unbounded spin systems; preprint, Université dell’Aquila, n? 4-77 (1977)
[5] Holley, R.A., Stroock, D.W.: A martingale approach to infinite systems of interacting processes; Ann Probability 4, 195 (1976) · Zbl 0332.60072 · doi:10.1214/aop/1176996130
[6] Lang, R.: Unendlich-dimensionale Wienerprozesse mit Wechselwirkung (I). Z. Wahrscheinlichkeitstheorie verw. Gebiete 38, 55 (1977) · Zbl 0349.60103 · doi:10.1007/BF00534170
[7] Lebowitz, J.L., Presutti, E.: Statistical mechanics of systems of unbounded spins. Comm. Math. Phys. 50, 195 (1976) · doi:10.1007/BF01609401
[8] McKean, H.P.: Stochastic integrals; New York: Academic press 1969 · Zbl 0191.46603
[9] Priouret, P., Yor, M.: Processus de diffusion à valeurs dans ? et mesures quasi-invariantes sur C(?; ?). Astérisque 22-23 (1975) · Zbl 0316.60051
[10] Ruelle, D.: Probability estimales for continuous spin systems. Comm. Math. Phys. 50, 189 (1976) · doi:10.1007/BF01609400
[11] Royer, G.: Processus de diffusion associé à certains modèles d’Ising à spins continus. Z. Wahrscheinlichkeitstheorie verw. Gebiete [A paraître] · Zbl 0377.60088
[12] Royer, G.: Etude du champ euclidien sur un réseau \(\mathbb{Z}^v \) . J. Math. Pures Appl. 56, 455 (1977)
[13] Föllmer, H.: Phase transition and Martin boundary. Sem. Probabilités Strasbourg IX. Lect. Notes in Math. 465, 305. Berlin-Heidelberg-New York: Springer 1975 · Zbl 0367.60112
[14] Nelson, E.: Probability theory and euclidean field theory. In Constructive field theory. Lect. Notes in Phys. 25, 94. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0367.60108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.