On the local Langlands conjecture for GL(2). (English) Zbl 0385.12006


11S37 Langlands-Weil conjectures, nonabelian class field theory
Full Text: DOI EuDML


[1] Buhler, J.: An Icosahedral Form of Weight One. In: Modular functions of one variableV. Lecture Notes in Mathematics 601, pp. 289-294, Berlin-Heidelberg-New York: Springer 1977 · Zbl 0363.12009
[2] Callahan, T.: Some Orbital Integrals and a Technique for Counting Representations ofGL 2(F). To appear · Zbl 0385.22010
[3] Casselman, W.: The Restriction of a Representation ofGL 2(K) toGL 2(O). Math. Ann.206, 311-318 (1973) · Zbl 0253.20062
[4] Deligne, P.: Formes modulaires et representations deGL(2). In: Modular functions of one variable II. Lecture Notes in Mathematics 349, pp. 55-106, Berlin-Heidelberg-New York: Springer 1973
[5] Deligne, P.: Les constantes des equations fonctionnelles des fonctionsL. In: Modular functions of one variable II. Lecture Notes in Mathematics 349, pp. 501-597, Berlin-Heidelberg-New York: Springer 1973
[6] Gelbart, S.: Automorphic forms and Artin’s conjecture. To apear in: Proceedings of the 1976 Bonn Conference on Modular Forms VI · Zbl 0368.10023
[7] Howe, R.: Kirillov Theory for CompactP-adic Groups. Preprint. Yale University. 1977 · Zbl 0385.22007
[8] Jaquet, H., Langlands, R.P.: Automorphic Forms onGL(2). Lecture Notes in Mathematics 114, Berlin-Heidelberg-New York: Springer 1970
[9] Langlands, R.P.: Base change forGL(2): The theory of Saito-Shintani with applications. IAS Notes, Princeton, 1975
[10] Serre, J-P.: Corps Locaux, 2nd Edition. Paris: Hermann 1968
[11] Serre, J-P.: Modular Forms of Weight One and Galois Representations. In: Algebraic Number Fields (L-Functions and Galois Properties). New York: Academic Press 1977
[12] Weil, A.: Basic Number Theory, 3rd Edition. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0326.12001
[13] Weil, A.: Exercises Dyadiques. Inventiones Math.27, 1-22 (1974) · Zbl 0307.12017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.