Reiterman, Jan A left adjoint construction related to free triples. (English) Zbl 0385.18006 J. Pure Appl. Algebra 10, 57-71 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 8 Documents MSC: 18C15 Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads 18B20 Categories of machines, automata 18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) PDF BibTeX XML Cite \textit{J. Reiterman}, J. Pure Appl. Algebra 10, 57--71 (1977; Zbl 0385.18006) Full Text: DOI OpenURL References: [1] Adámek, J., Free algebras and automata realizations in the language of categories, Comment. math. univ. carolinae, 15, 589-602, (1974) · Zbl 0293.18006 [2] Arbib, M.; Manes, E., A Categorist’s view of automata and control, (), 62-78 · Zbl 0306.18002 [3] Arbib, M.; Manes, E., Machines in a category: an expository introduction, SIAM review, 16, 163-192, (1974) · Zbl 0288.18005 [4] Barr, M., Coequalizers and free triples, Math. Z., 116, 307-322, (1970) · Zbl 0194.01701 [5] Barr, M., Right exact functors, J. pure appl. algebra, 4, 1-8, (1974) · Zbl 0281.18003 [6] P. Freyd, On the concreteness of certain categories, preprint. · Zbl 0248.18008 [7] Koubek, V., Set functors, Comment. math. univ. carolinae, 12, 175-195, (1971) · Zbl 0217.06803 [8] V. Koubek and J. Reiterman, Automata and categories — input processes, MFCS ’75 Proc., to appear. · Zbl 0319.94026 [9] Kůrková-Pohlová, V.; Koubek, V., When a generalized algebraic category is monadic, Comment. math. univ. carolinae, 15, 577-587, (1974) · Zbl 0294.18004 [10] Prikry, K., On descending complete ultrafilters, Cambridge summer school in math. logic, Lecture notes, 337, 459-488, (1973) [11] Trnková, V., Some properties of set functors, Comment. math. univ. carolinae, 10, 323-352, (1969) · Zbl 0183.30401 [12] Trnková, V.; Adámek, J.; Koubek, V.; Reiterman, J., Free algebras, input processes and free monands, Comment. math. univ. carolinae, 16, 339-352, (1975) · Zbl 0308.18001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.