×

zbMATH — the first resource for mathematics

Measurable selection theorems for optimization problems. (English) Zbl 0385.28005

MSC:
28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections
28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] BLACKWELL, D., D. FREEDMAN and M. ORKIN: The optimal reward operator in dynamic programming, Ann. Probability2, 926-941 (1974) · Zbl 0318.49021 · doi:10.1214/aop/1176996558
[2] BROWN, L.D. and R. PURVES: Measurable selections of extrema, Ann. Statist.1, 902-912 (1973) · Zbl 0265.28003 · doi:10.1214/aos/1176342510
[3] DUBINS, L.E. and L.J. SAVAGE: How to Gamble if You Must, New York: McGraw Hill 1965 · Zbl 0133.41402
[4] EVSTIGNEEV, I.V.: Measurable selection and dynamic programming, Math. Operat. Res.1, 267-272 (1976) · Zbl 0373.90086 · doi:10.1287/moor.1.3.267
[5] FREEDMAN, D.: The optimal reward operator in special classes of dynamic programming problems, Ann. Probability2, 942-949 (1974) · Zbl 0318.49022 · doi:10.1214/aop/1176996559
[6] HAUSDORFF, F.: Mengenlehre, Berlin 1927
[7] HIMMELBERG, C.J.: Measurable relations, Fundamenta Math.87, 53-72 (1975) · Zbl 0296.28003
[8] HIMMELBERG, C.J., T. PARTHASARATHY and F.S. VAN VLECK: Optimal plans for dynamic programming problems, Math. Operat. Res.1, 390-394 (1976) · Zbl 0368.90134 · doi:10.1287/moor.1.4.390
[9] HINDERER, K.: Foundations of Non-stationary Dynamic Programming with Discrete Time Parameter, Lecture Notes in Operat. Res. Math. Systems33, Berlin-Heidelberg-New York: Springer 1970 · Zbl 0202.18401
[10] HOFFMANN-JØRGENSEN, J.: The Theory of Analytic Spaces, Various Publication Series10, Arhus Universitet, Denmark 1970 · Zbl 0226.28001
[11] KURATOWSKI, K.: Topology II, New York: Academic Press 1968
[12] KURATOWSKI, K. and C. RYLL-NARDZEWSKI: A general theorem on selectors, Bull. Acad. Polon. Sci.13, 397-403 (1965) · Zbl 0152.21403
[13] SAINTE-BEUVE, M.-F.: On the extension of von Neumann-Aumann’s theorem, J. Functional Analysis17, 112-129 (1974) · Zbl 0286.28005 · doi:10.1016/0022-1236(74)90008-1
[14] SCHÄL, M.: A selection theorem for optimization problems, Arch. Math.25, 219-224 (1974) · Zbl 0351.90069 · doi:10.1007/BF01238668
[15] SCHÄL, M.: Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal, Z. Wahrscheinlichkeitstheorie verw. Gebiete32, 179-196 (1975) · Zbl 0316.90080 · doi:10.1007/BF00532612
[16] SCHÄL, M.: Addendum to the paper [15], Technical Report, University of Bonn 1977
[17] SHREVE, S.E.: Dynamic Programming in Complete Separable Spaces, University of Illinois, Ph.D. thesis 1977
[18] WAGNER, D.H.: Survey of measurable selection theorems, SIAM J. Control and Optimization15, 859-903 (1977) · Zbl 0407.28006 · doi:10.1137/0315056
[19] WHITT, W.: Baire classification of measurable selections of extrema, School of Organization and Management, Yale University 1976
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.