Characterization of the unit ball in \(\mathbb{C}^n\) by its automorphism group. (English) Zbl 0385.32016


32T99 Pseudoconvex domains
32M10 Homogeneous complex manifolds
Full Text: DOI EuDML


[1] Burns, D., Shnider, St. Spherical hypersurfaces in complex manifolds. Inventiones math.33, 223-246 (1976) · Zbl 0357.32012 · doi:10.1007/BF01404204
[2] Diederich, K.: Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten. Math. Ann.187, 9-36 (1970) · Zbl 0189.36702 · doi:10.1007/BF01368157
[3] Diederich, K.: Über die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten. Math. Ann.203, 129-170 (1973) · Zbl 0253.32011 · doi:10.1007/BF01431441
[4] Granham, I.: Boundary behavior of the Caratheodory and Koboyashi’ metrics on strongly pseudoconvex domains in ? n with smooth boundary. Trans. Amer. math. Soc.207, 219-240 (1975)
[5] Koboyashi, S.: Hyperbolic manifolds and holomorphic mappings. New York: Marcel Dekkar 1970
[6] Narasimhan, R.: Several complex variables. Chicago: The University of Chicago Press 1971 · Zbl 0223.32001
[7] Wong, B.: On the holomorphic curvature of some intrinsic metrics. (To appear) · Zbl 0364.32009
[8] Wong, B.: Boundary behavior of some intrinsic measures on strongly pseudoconvex bounded domains with smooth boundary. (To appear)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.