×

A note on Gauss measures which agree on small balls. (English) Zbl 0385.60007


MSC:

60B05 Probability measures on topological spaces
60G15 Gaussian processes
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] A. Badrikian and S. Chevet , Mesures cylindriques, espaces de Wiener et aléatoires gaussiennes . Lecture Notes in Math. , 379 , Springer-Verlag , Berlin - Heidelberg - New York , 1974 . MR 420760 | Zbl 0288.60009 · Zbl 0288.60009 · doi:10.1007/BFb0060493
[2] C. Borell , Convex measures on locally convex spaces . Ark. Mat. , t. 12 , 1974 , p. 239 - 252 . MR 388475 | Zbl 0297.60004 · Zbl 0297.60004 · doi:10.1007/BF02384761
[3] C. Borell , Gaussian Radon measures on locally convex spaces . Math. Scand. , t. 38 , 1976 , p. 265 - 284 . Article | MR 436303 | Zbl 0335.28009 · Zbl 0335.28009
[4] R.B. Darst , Two singular measures can agree on balls Mathematika , t. 19 , 1973 , p. 224 - 225 . MR 346117 | Zbl 0289.28001 · Zbl 0289.28001 · doi:10.1112/S0025579300004812
[5] R.O. Davies , Measures not approximable or not specifiable by means of balls . Mathematika , t. 18 , 1971 , p. 157 - 160 . MR 310162 | Zbl 0229.28005 · Zbl 0229.28005 · doi:10.1112/S0025579300005386
[6] J. Hoffmann-Jørgensen , Measures which agree on balls . Math. Scand. , t. 37 , 1975 , p. 319 - 326 . Article | MR 409757 | Zbl 0329.28002 · Zbl 0329.28002
[7] J. Hoffmann-Jørgensen , Bounds for the Gaussian measure of a small ball in a Hilbert space . Mat. Inst. , Aarhus univ ., Var. Publ. Ser. No 18 , April 1976 .
[8] L.A. Shepp , The measure of certain small spheres in Hilbert space . Bell Laboratories , July 1976 .
[9] F. Topsøe , Packings and coverings with balls in finite dimensional normed spaces . Lecture Notes in Math. , 541 , p. 187 - 198 , Springer-Verlag , Berlin - Heidelberg - New York , 1976 . MR 457660 | Zbl 0345.52010 · Zbl 0345.52010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.