×

Moduli of vector bundles on the projective plane. (English) Zbl 0386.14005


MSC:

14D20 Algebraic moduli problems, moduli of vector bundles
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14C21 Pencils, nets, webs in algebraic geometry
14J25 Special surfaces

References:

[1] Atiyah, M.F.: Riemann surfaces and spin structures. Ann. Sci. Ec. Norm. Sup. 4e serie, t.4, 47-62 (1971) · Zbl 0212.56402
[2] Barth, W.: Some properties of stable rank-2 vector bundles on ? n . Math. Ann.226, 125-150 (1977) · doi:10.1007/BF01360864
[3] Bateman, H.: The quartic curve and its inscribed configurations. Am. J. Math.36, 357-386 (1914) · JFM 45.0823.01 · doi:10.2307/2370369
[4] Darboux, G.: Principes de géométrie analytique. Paris: Gauthiers-Villars 1917 · JFM 46.0877.14
[5] Horrocks, G.: Vector bundles on the punctured spectrum of a local ring. Proc. London math. Soc.14, 689-713 (1964) · Zbl 0126.16801 · doi:10.1112/plms/s3-14.4.689
[6] Hulsbergen, W.: Vector bundles on the projective plane. Proefschrift, Leiden (1976)
[7] Lüroth, J.: Einige Eigenschaften einer gewissen Gattung von Curven vierter Ordnung. Math. Ann.1, 37-53 (1869) · JFM 02.0511.02 · doi:10.1007/BF01447385
[8] Maruyama, M.: Stable vector bundles on an algebraic surface. Nagoya Math. J.58, 25-68 (1975) · Zbl 0337.14026
[9] Mumford, D.: Lectures on curves on an algebraic surface. Ann. Math. Studies 59, Princeton N.J. (1966) · Zbl 0187.42701
[10] Mumford, D.: Theta characteristics on an algebraic curve. Ann. Sci. Ec. Norm. Sup. 4e serie, t.4, 181-192 (1971) · Zbl 0216.05904
[11] Schwarzenberger, R.L.E.: Vector bundles on the projective plane. Proc. London math. Soc. (3)11, 623-640 (1961) · Zbl 0212.26004 · doi:10.1112/plms/s3-11.1.623
[12] Tyurin, A.N.: On intersections of quadrics. Russian Math. Surveys30: 6, 51-105 (1975). Transl. from Russian. · Zbl 0339.14020 · doi:10.1070/RM1975v030n06ABEH001530
[13] Waterhouse, W.C.: Pairs of quadratic forms. Inventiones math.37, 157-164 (1976) · Zbl 0337.10015 · doi:10.1007/BF01418967
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.